The NanoAOD event data format in CMS

Marco Peruzzi (CERN)
on behalf of the CMS Collaboration

19th International Workshop on Advanced Computing and Analysis Techniques in Physics Research
Saas-Fee, Switzerland, 11th - 15th March 2019
CMS event data formats

- Main event data formats is used for standard pp collision runs:
 - **RAW**: ~ 1 MB
 - **RECO**: ~ 3 MB
 - **AOD**: ~ 500 kB

Run 1 user ntuples
Main event data formats is use for standard pp collision runs:

- **RAW**: ~ 1 MB
- **RECO**: ~ 3 MB
- **AOD**: ~ 500 kB
- **MiniAOD**: ~ 30-50 kB
CMS event data formats

- Main event data formats is use for standard pp collision runs:
 - RAW: ~ 1 MB
 - RECO: ~ 3 MB
 - AOD: ~ 500 kB
 - MiniAOD: ~ 30-50 kB
 - NanoAOD: ~ 1-2 kB

- Initial design studies and prototype were presented at CHEP 2018
- I will summarize the main features and current status of the project

The NanoAOD event data format in CMS
Private analysis frameworks

- During Run2, most physics analyses have been based on the MiniAOD data format
- Typical pattern:
 - Privately integrated “recipes” for object ID and calibration
 - Calculation of analysis specific observables
 - Variations for systematic uncertainties
 - Event selection (skimming)
 - Histories

The NanoAOD event data format in CMS
Towards NanoAOD

• Developing a framework to support these activities is a significant workload investment
 • We have seen “large frameworks” emerging, each supporting many different analyses and maintained collaboratively by several institutes
 • Private ntuples are actually shared and re-used multiple times, even if they were originally designed for a specific analysis
 • With different detector configurations and object definitions for each data taking year, the complexity of recipes increases dramatically
Towards NanoAOD

- Developing a framework to support these activities is a **significant workload investment**
 - We have seen “**large frameworks**” emerging, each supporting many different analyses and maintained collaboratively by several institutes
 - **Private ntuples are actually shared and re-used multiple times**, even if they were originally designed for a specific analysis
 - With different detector configurations and object definitions for each data taking year, the complexity of recipes increases dramatically

- We have defined a **new compact data format**, with an event size in the ballpark of **1 kB**
 - content choice based on our Run2 analysis experience and interaction with collaborators in several groups: **first of all it’s a physics challenge, even before dealing with technical aspects!**
 - resembles the typical structure and size of private ntuples, with new features to make it more universal and interface it with central processing tools
 - **aim at supporting at least 50% of physics analyses** in CMS, as an initial goal
Technical design

- **Technical requirements**, inferred by what has proven popular among analyzers:
 - flat `ROOT::TTTree`[^1] event structure
 - can be read without a dictionary, interfaced to external tools, …
 - maximum **flexibility in the definition of the event content**
 - freedom to efficiently run **private productions** for tests and customised versions

Technical design

- **Technical requirements**, inferred by what has proven popular among analyzers:
 - flat `ROOT::TTree` event structure
 - can be read without a dictionary, interfaced to external tools, …
 - maximum **flexibility in the definition of the event content**
 - freedom to efficiently run **private productions** for tests and customised versions
 - configuration and code easily **accessible even by collaborators** with less technical skills (e.g. new students joining an ongoing project)

Technical design

- **Technical requirements**, inferred by what has proven popular among analyzers:
 - flat ROOT::TTTree\[^1\] event structure
 - can be read without a dictionary, interfaced to external tools, …
 - maximum **flexibility in the definition of the event content**
 - freedom to efficiently run **private productions** for tests and customised versions
 - configuration and code easily **accessible even by collaborators with less technical skills** (e.g. new students joining an ongoing project)
 - modular structure for the **efficiently sharing** additional variables developed by a specific analysis group, and useful for many other
 - cover different object definitions and identification variables in a coherent structure, **abstracting from low level details** (e.g. “tight photon ID” across Run2)

Design choices

- NanoAOD is a **bare ntuple, and all branches follow a naming convention**
 - e.g. MET_pt, MET_eta, Muon_pt [nMuons], Muon_eta [nMuons]
- Each variable is stored with **configurable precision, to save space**
 - useless to store a variable measured with 10% precision as a 32-bit float
 - aggressive ROOT file compression is then applied

- **No cross-cleaning** is performed among physics objects in production (e.g. we don’t decide whether a candidate is a jet or an electron)
 - this is an analysis-dependent choice, depends on object selection
 - we store both, establishing a **link** between them for later usage

- Auxiliary TTrees in the same file carry **additional metadata**
- **Fully integrates with the CMSSW production infrastructure, for both job configuration and workflow management**
Structure of NanoAOD code

- **Standard CMSSW analysis modules**
- **Produce object “tables” (one per collection) with aligned objects**
Structure of NanoAOD code

- **Standard CMSSW analysis modules**
- Produce **object “tables” (one per collection) with aligned objects**
- Can be saved:
 - either in EDM form (useful for production e.g. input to merge jobs),
 - or to flat ROOT TTree for analysis usage
Configuration

• Standard CMSSW analysis modules
 • allows for seamless integration of existing code, either developed for reconstruction or by analysis groups
• Modules for **typical analysis operations standardised to a common interface**
 • e.g. evaluation of multivariate discriminant on each object in a collection
Configuration

- **Standard CMSSW analysis modules**
 - allows for seamless integration of existing code, either developed for reconstruction or by analysis groups
 - Modules for **typical analysis operations standardised to a common interface**
 - e.g. evaluation of multivariate discriminant on each object in a collection

- **Table producer** also configured via **expression strings**
 - easy to customise!
 - allow for calling object functions from compiled formulas
 - each variable comes with **integrated documentation**

<table>
<thead>
<tr>
<th>Muon_jetIdx</th>
<th>Int_t(index to Jet)</th>
<th>index of the associated jet (-1 if none)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muon_jetRelIso</td>
<td>Float_t</td>
<td>Relative isolation in matched jet (1/ptRatio-1, pfRelIso04_all if no matched jet)</td>
</tr>
</tbody>
</table>

- align choice of analysis modules and table producer configuration for each data taking period, via global modifiers
Event size and production speed

- **High-level physics objects** of common usage are **covered** by the current NanoAOD content.

- Per-event compressed size is well **below 1 kB** in typical data events with Run2 pileup conditions.

- About **1.6 kB/event in ttbar sample** (busy events with many jets), including generator level information.
Event size and production speed

- **High-level physics objects** of common usage are **covered** by the current NanoAOD content.

- Per-event compressed size is well **below 1 kB in typical data events** with Run2 pileup conditions.

- About **1.6 kB/event in ttbar sample** (busy events with many jets), including generator level information.

- **Production speed** from MiniAOD is about **10 Hz on one CPU core**.
 - again, this figure is quite sample-dependent.
 - we observe **no particular infrastructure bottlenecks**:
 - most of the time goes in the evaluation of complex multi-variate jet taggers based on deep neural networks (could be moved to MiniAOD processing).
Post-processing

- A **framework for post-processing of NanoAOD trees** is also centrally maintained
- **Plugin modules** for:
 - calculating variations (e.g. from systematic uncertainties) of object quantities
 - obtaining data / MC corrections in form of event weights (“scale factors”)
 - even higher level event observables such as matrix element amplitudes, deep neural network classifiers, multi-object taggers, …
Post-processing

- A framework for post-processing of NanoAOD trees is also centrally maintained
- Plugin modules for:
 - calculating variations (e.g. from systematic uncertainties) of object quantities
 - obtaining data / MC corrections in form of event weights ("scale factors")
 - even higher level event observables such as matrix element amplitudes, deep neural network classifiers, multi-object taggers, ...

- **Event skimming** based on both string expressions (à la - TTree::Draw) and modules
- Strong advantage in terms of workload and robustness to have these implemented in common packages, reviewed and maintained by object experts

NanoAOD flat TTree

Expression: “nJets>2”

Module decision: return (customHT > 300)

Skimmed TTree
Automated workflows

- In the modular NanoAOD framework, users can easily develop **automated analysis workflows** for a variety of repetitive tasks.
- For **code development**:
 - **continuous integration workflow** for testing new NanoAOD features and monitor the effect of upstream changes in other packages
 - integrated with the CMSSW **Data Quality Monitoring infrastructure**

![Graphs showing distributions of DeepFlavour b+bb tag discriminator and Quark vs Gluon likelihood discriminator.](image)
Automated workflows

- For derivation of **object calibrations**, each time the detector conditions change:
 - exploring how to automate the derivation of jet energy corrections
 - potential to support central, automated efficiency scale factors derivation

- The reduction in workload for physics object groups could be substantial
 - faster object calibrations mean less time between recording the data and publishing a physics analysis
 - also very valuable, allows for **promptly monitoring the data quality with the same high level features that will be used in the analysis**
Additional interfaces

• Interface to new data processing tools:
 • natural environment to profit from the new ROOT RDataFrame features (*)
 e.g. check how to find the Higgs boson in CERN OpenData in this RDataFrame tutorial using NanoAOD-like ntuples!

 • also easily interfaced to non-HEP-specific ecosystems

• NanoAOD promising also from the data preservation and open access perspective
 • accessible high level object features
 • no need of experiment-specific software
 • easy interface to a variety of modern data analysis tools (e.g. machine learning)

(*) You will see this in action in L. Moneta’s talk, later in this session
Adoption status

- NanoAOD production is now **run by default in all MC and data processing campaigns**
 - including re-processing to be used for most results in the next months: full Run2 CMS results using NanoAOD are a very short time ahead!
 - readiness already shown by early adoption in our recent observation of Higgs boson decay to bottom quarks (*)

- The impact on the data analysis pattern is still to be observed in its entirety
- The complete set of **full Run2 data and MC, about 60B events, fits in few tens of TB**
 - “after 2020, the whole Run2 could fit in one big machine!”
 - even a moderate skimming brings the dataset size to a level where many subsequent analysis steps can be performed “locally”

- As we move **into Run3, we are optimistic that the adoption of the NanoAOD will grow**
 - we continue tuning its content to help this process

(*) CMS Collaboration, Observation of Higgs boson decay to bottom quarks, Phys. Rev. Lett. 121, 121801, doi:10.1103/PhysRevLett.121.121801
Towards HL-LHC

- We assume that, during HL-LHC, NanoAOD will support 50% of the analyses
 - we aim to exceed this goal by more content tuning and experience
 - the 70% goal initially set for MiniAOD coverage has now been exceeded to about 95%
- This makes it possible to reduce the number of MiniAOD replicas on disk

Current estimates (*) show that this represents:
- a factor 2x reduction in disk storage needs!
- 15% less CPU for analysis

Extracted from T. Boccali, M. Klute, LHCC WLCG CMS report, 11 Sep. 2018

(*) More details in T. Boccali’s talk on Wednesday afternoon