Automated and Intelligent Data Migration Strategy in High Energy Physical Storage Systems

Zhenjing CHENG

(IHEP Computing Center)

Motivation

- High Energy Physics Computing → data intensive
 - Experiments like JUNO, LHAASO and BESIII store and produce near 100 PB data(increasing)
 - need better data access performance(or I/O bandwith)
- Future Storage → Huge and distributed clustered storage
 - Hundreds of servers and tens of thousands clients
 - SATA HDDs can't provide **higher IOPS**! →import flash disks
 - Limited fundings → all-flash storage is too expensive!
 - Build hierarchical and tiered storage(tapes, disks, SSD)

Motivation

- Tiered storage need data migration strategy
 - less active data be moved to lower cost storage devices regularly

Jiang S, Davis K, Zhang X. Coordinated multilevel buffer cache management with consistent access locality quantification[J] IEEE Transactions on Computers, 2007, 56(1): 95-108.

- Local site storage: Data access requests are not completely random
 - Data access locality → a small set of data keep active for a certain period of time
 - e.g. certain physics channel events datasets
 - multiple users might analyze the same datasets within a specific period of time
- Can we predict future file access?
 - identify hot/warm/cold data or different data use cases based on file access
 - optimize data migration strategy based on file heat changes

Related studies

- Huge gap of data access times between memory and disk
 - To alleviate the problem: caching and prefetching
 - prefeching: bring data in memory before they are needed
 - similarly, bring hot file in **SSD tiers** to improve I/O performance and move cold file out
 - Make as many correct predictions as possible and as few false predictions as feasible
- Widely applicable file access predictors
 - Stable Successor:
 - Recent Popularity:
 - Disadvantages:
 - Short-term prediction
 - stand-alone prediction, not suitable for mass parallel storage system like EOS
 - rely on file access order heavily

Challenges:

- EOS cluster operators don't understand users' data meanings
 - We only know users' file history access statistics by analysising eos fst logs
- Prediction model
 - should be suitable for massive files and data parallel access
 - shouldn't rely too much on file access order

regression analysis

- load predictions for continuous time:
- High-energy physics storage : billions of files
- impossible to build a regression model for each file

Prediction Model

- Deep Learning Algorithm : LSTM(Long short-term memory)
 - improved RNN capable of learning the long-term dependencies
 - recognize patterns in sequences of data, like text,
 handwriting, or numerical times series data from sensors,
 stock markets. E.g.

Application

Prediction Model

- Define data heat
 - (1) "hot data",
 - substantial reuse of small amount of high-energy datasets by users for a long time.
 - migrate to faster storage like SSD and SAS
 - (2)" cold data",
 - mass high-energy datasets used by a single user for limited processing times.
 - migrate to lower but high-capacity storage like HDD
- So we divided files into different categories for different data heat
 - based on number of file access

• Distribution of file access number within 7 days

Model Input(File Access Feature)

- EOS: FST logs keep data access records in file units, as follows
- Provide file history read/write ratio, Re-read, Re-write, Random read, Random write and so on

 $log = a048f57a - 6034 - 11e8 - 8f98 - 288023415e08\&path = /\#curl\#/eos/user/b/biby/yinlq/rootdata/QGSJET-FLUKA/Helium/1.e14_1.e15/wcda003363.root\&ruid = 10408\&rgid = 1000\&td = *CioA-gA.1639102:551@vm088029\&host = eos07.ihep.ac.cn\&lid = 1048578\&fid = 123971808\&fsid = 25\&ots = 1527263977\&otms = 887\&cts = 1527263998\&ctms = 734\&rb = min = 0&rb = max = 0&rb = sigma = 0.00\&wb = 8830528\&wb = min = 63\&wb = max = 32768\&wb = sigma = 2225.83\&sfwdb = 8814629\&sbwdb = 8814592\&sxlfwdb = 8814592\&sxlfwdb = 8814592\&sxlfwdb = 8814592\&sxlfwdb = 8814592\&nrc = 0&nwc = 271\&nfwds = 3&nbwds = 1&nxlfwds = 1&nxlbwd = 1&rt = 0.00\&wt = 24.91\&osize = 0&csize = 8830565\&sec.prot = unix&sec.name = root&sec.host = vm088029.ihep.ac.cn&sec.vorg = &sec.grps = root&sec.role = &sec.info = &sec.app = fuse$

Make file access vectors

<timestamp, filename, filesize, read/write ratio, read/write bytes sequence/random read >

Model Input(File Access Feature)

Compact multiple vectors into <u>a sequence of time series</u> by hour

T: timestamp F₁:filename F₂: file size R₁:file read/write ratio S: sequential/random ratio R₂: file read/write bytes

- Use access features in the past to predict future file heat
 - <u>dynamical</u> training time window
 - the same model complexity, but more historical information used!

very suit for RNN!

System design

• Set a goal: predict <u>file heat</u> in next 7 days

• LSTM model:

- <u>4-layer</u> fully connected RNN with <u>64</u> LSTM cells per layer
- learning rate decades (0.001, 0.0001)
- <u>256</u> samples per batch, training at the same time

Data set

- source: EOS for LHAASO cooperation group user
- 5,842,207 files access records (2018.4.1-2018.5.1)
- divided into three groups, training data set(80%), verification data set(10%), test data set(10%)

Results

- Accuracy
 - Hot file prediction accuracy: 87.52%
 - Cold file prediction accuracy: 92.89%
 - Overall classification accuracy: 91.78%
- Other metrics
 - TPR/Recall: 0.9532 FPR: 0.1028

Conclusion and next step

- <u>Hierarchical storage</u> is the trend for IHEP storage. Deep learning helps make file heat prediction.
- Now binary classification, multiple decisions in future for multiple storage layers

- Didn't consider impact brought by data migration to the storage performance
- Introduce the concept of migration cost, consider impact on storage performance
- Adaptive and Automated file migration strategy, more adaptive to storage load changes

Thanks