
Speeding HEP Analysis with ROOT Bulk I/O
Brian Bockelman, Zhe Zhang, Oksana Shadura, University of Nebraska-Lincoln

ROOT IO is an incredibly flexible format.

It can easily store the complex objects that correspond to the experiment’s
 data.

Introduction

Design API

Int_t TBranch::GetBulkEntries(Long64_t entry, TBuffer &user_buf)

Arguments

entry: an entry number that contains a complex event object.
user_buf: an user-defined buffer that stores deserialized basket.

Access to Events

An user can later on access an event in the basket using:
reinterpret_cast<T>(user_buf.GetCurrent())[idx]
where T is the object type.

API Implementation

What is Bulk IO?

Bulk IO is a set of techniques and APIs we developed for ROOT that allows the
 user to deserialize a large set of events at a time.

Why Bulk IO?

For small, simple events the overhead of ROOT library calls is much larger
 than the cost of deserialization in user-space. By returning an entire basket
 of serialized objects to the user, the user can deserialize data when needed.

Further improvements can be achieved by returning serialized events to
 the user and allowing the compiler to inline deserialization in the event loop.

Why Not Bulk IO?

Complex objects involving references or from polymorphic classes require
 expensive lookups to deserialize data. In these cases, the library overheads are
 minimal and bulk IO provides little benefit.

Turbocharging ROOT with Bulk IO

TTreeReader with Bulk IO

High Overheads for Simple Objects

Considering a TBranch that consists floats, reading a float object involves in:
o  Virtual Calls
o  Function pointer calls
o  Bounds checking, error condition checking, etc.

Branches
A B C D E

Ev
en

ts

1
2
3
4
5

Logical Layout

File Layout ...

ROOT IO vs Bulk IO: An Illustration

Each basket (a single color below) is
 compressed and written to the file. Bulk IO
 allows the user to read all the objects in a
 basket at once.

Branches
A B C D E

E
ve

nt
s

1
2
3
4
5

Logical Layout

Branches
A B C D E

E
ve

nt
s

1
2
3
4
5

Logical Layout

GetEntry(1)	

GetEntry(2)	

…	

Bulk IO	

Regular ROOT IO	

RDataFrame (RDF)

Interface design was inspired by other dataframe APIs
 such as pandas and Spark DataFrames.

RDataSource

We integrate Bulk IO into RDataFrame through
 RDataSource (RDS) which defines an API for RDF to read
 arbitrary data formats.

RDataSource with Bulk IO

TTreeReader Interface
An interface for an user to access simple object (primitives, arrays,
 etc.).

Sample Code

TTreeReaderFast
o  myReader.Next() is inlined by compiler, avoiding function calls.
o  *myF would invoke the appropriate deserialization code.

TBranch::GetEntry vs. TBranch::GetBulkEntries

Performance of TBranch and TTreeReaderFast

TTreeReader vs. TTreeReaderFast

10+ times faster !	
Test Setup:

o  Desktop Intel i5 4-Core @ 3.2GHz
o  Reading from a TTree with 100 million float

 values.

Performance with RDataSource and RDataFrame

o  RDataFrame
 introduces
 overheads on Bulk
 IO, but Bulk IO still
 outperforms regular
 RDF.

o  Using RDataSource
 directly is 2X faster
 than regular RDF.

Acknowledgement
This work was supported by the National Science Foundation under
 Grant ACI-1450323. This research was done using resources provided
 by the Holland Computing Center of the University of Nebraska.

