
ROOT I/O compression algorithms
and their performance impact within Run 3
Oksana Shadura, Brian Paul Bockelman
University of Nebraska–Lincoln, USA
oksana.shadura@cern.ch, bbockelm@cse.unl.edu

Introduction
We have performed a survey of the performance of the new compression techniques. We also provide insight into solutions applied to the bottlenecks in
compression algorithms for the improved ROOT performance.

ROOT compression algorithms
1. ZLIB - a LZ77 preprocessor with Huffman

coding [ROOT default]
(a) other modifications - zlib-cf or Intel

zlib
2. LZMA - a variant of LZ77 with huge dictio-

nary sizes and special support for repeatedly
used match distances, whose output is then
encoded with a range encoder, using a com-
plex model to make a probability prediction
of each bit.

3. LZ4 - a LZ77-type compressor with a fixed,
byte-oriented encoding and no Huffman cod-
ing pass [new ROOT default]

4. ZSTD - a dictionary-type algorithm (LZ77)
with large search window and fast imple-
mentations of entropy coding stage, using
either very fast Finite State Entropy (tANS)
or Huffman coding. [Facebook]

5. Snappy - a byte aligned LZ77 algorithm in-
tended for high speed rather than good com-
pression.[Google]

6. Old ROOT compression algorithm (back-
ward compatibility)

ROOT I/O overview

→ We can try to arrange bits of the values to com-
press sequences for primitive branches efficiently
[e.g. Kudu, Apache].

Compression Pre-conditioners
Algorithms that rearranges typed, binary data for
improving compression ratio:

1. Shuffle - integrated byte shuffle pre-
conditioner (available in Blosc)

2. BitShuffle - integrated bit shuffle pre-
conditioner (available in Blosc)

Recommendation to the users
1. Ratio between compression ratio and

compression/decompression speed: LZ4
2. Size of the file: LZMA
3. Recovering data from partial file (in case

of crash): tune AutoSave!
(a) Default frequency is to save the meta-

data every 10 clusters.
4. Memory use or physical I/O perfor-

mance: tune AutoFlush!
(a) Default is number of entries needed to

reach 32 Mb of compressed data [num-
ber of entries or compressed data size]

Comparison of ROOT compression algorithms -compression

→ ZSTD is showing promising results, even though compression dictionary procedure is still not optimal.

WIP: LZ4 + Bitshuffle

nanoaod

50

100

150

112

79.6
93.2

Si
ze

of
fil
es
,M

B

lz4 lz4-bitshuffle zlib

→ It is a promising result that shows that LZ4
can outperform ZLIB by better compression ratio,
while compression time should be still optimized.

Comparison of current ROOT compression algorithms - decompression

→ We know that decompression for LZ4 and ZSTD is faster than reading decompressed data (it depends
on the medium type, e.g., SSD): significantly less data is coming from the I/O subsystem.

Acknowledgements
This work was supported by the National Science Foundation under Grant ACI-1450323.


