ROOT 1/0 compression algorithms

and their performance impact within Run 3

Oksana Shadura, Brian Paul Bockelman

University of Nebraska—Lincoln, USA

oksana.shadura@cern.ch, bbockelm@cse.unl.edu

We have performed a survey of the performance of the new compression techniques. We also provide insight into solutions applied to the bottlenecks in
compression algorithms for the improved ROOT performance.

. ZLIB - a LZ77 preprocessor with Huffman
coding [ROOT default]

(a) other modifications - zlib-cf or Intel
zlib

. LZMA - a variant of LZ77 with huge dictio-
nary sizes and special support for repeatedly
used match distances, whose output is then
encoded with a range encoder, using a com-
plex model to make a probability prediction
of each bit.

. LZ4 - a LZ77-type compressor with a fixed,

byte-oriented encoding and no Huffman cod-
ing pass [new ROOT default]

. ZSTD - a dictionary-type algorithm (LZ77)
with large search window and fast imple-
mentations of entropy coding stage, using
either very fast Finite State Entropy (tANS)
or Huffman coding. [Facebook]

. Snappy - a byte aligned LZ77 algorithm in-
tended for high speed rather than good com-
pression.[Google]

. Old ROOT compression algorithm (back-
ward compatibility)

. Ratio between compression ratio and
compression /decompression speed: LZ4

. Size of the file: LZMA

. Recovering data from partial file (in case
of crash): tune AutoSave!

(a) Default frequency is to save the meta-
data every 10 clusters.

. Memory use or physical 1/0O perfor-
mance: tune AutoFlush!

(a) Default is number of entries needed to
reach 32 Mb of compressed data [num-
ber of entries or compressed data size]

Size of files, MB

\
nanoaod

U0 1z4 0 01z4-bitshuffle 1 0 zlib

— It is a promising result that shows that LZ4
can outperform ZLIB by better compression ratio,
while compression time should be still optimized.

IS WOr

_ Braﬁéﬁéé’: Logical structure
S A B C

File structure

— ]

... Basket [“green” entries are compressed together]

— We can try to arrange bits of the values to com-
press sequences for primitive branches efficiently

Algorithms that rearranges typed, binary data for
Improving compression ratio:

1. Shuffle -

integrated byte shuffle pre-
conditioner (available in Blosc)

. BitShuffle - integrated bit shuffle pre-

le.g. Kudu, Apache].

conditioner (available in Blosc)

Compression speed vs Compression Ratio for compression
algorithms
Test node: Haswell+ SSD
.20 ZMA
. ZSTD
s e,
1)
c 4.75 = 3 o —=
‘E . ZLIB
= 4.5 ¥
3
C LZ4
4.25
4
0 " >0 £ 100 143 150 175
Compression speed, MB/s
® ZSTD-1 ZSTD-2 ZSTD-3 ISTD-4 ISTD-5 STD-6
ISTD-7 ISTD-8 A 7ZSTD-9 VWV ZLIB-1 @® ZLIB-6 @& ZLIB-9
LZMA-1 LZMA-4 LZMA-9 © LZ4-1 & LZ4-4 LZ4-9. |

— /STD is showing promising results, even though compression dictionary procedure is still not optimal.

Decompression speed, 2000 event TTree, MB/s

Larger Is better!

B No Compression

B Zstd

LZ4
B zib1.28
B LzvA
0 1 6 9

Compression level

— We know that decompression for LZ4 and ZSTD is faster than reading decompressed data (it depends
on the medium type, e.g., SSD): significantly less data is coming from the |/O subsystem.

was supported by the Nationa

clence Foundation under

rant ACI-1450



