
Performance results of the
GeantV prototype with
complete EM physics

Andrei Gheata for the GeantV R&D team

ACAT 2019, Saas Fee

Vector Simulation R&D

• GeantV: performance study for a vector simulation workflow
• An attempt to improve computation performance of Geant4

• Steering framework revisited
• Track-level parallelism, “basket” workflow
• Improving instruction and data locality, leverage vectorization
• Adaptability to new hardware and accelerators

• Making simulation components more portable and vector friendly
• VecGeom: modern geometry modeler handling single/multi particle queries
• New physics framework, more simple and efficient
• VecCore, VecMath: new SIMD API, SIMD-aware RNG and math algorithms

2

std::vector<Track*>
Vector basket

Propagation
Stage

LinearPropagator
(scalar)

FieldPropagator
(vectorized)

Select appropriate handler
Select(Track*)

scalar

SOA

Both scalar/vector flow
are supported

Physics
Stage

3

GeantV multi-particle stepping

GeantTrack *

Stepping loop

Prioritized particle stack Primaries
#0

Event
server

consume showers first

Secondaries
#1

other stages…

Geometry
Stage

Stage
Basket

Stage
Basket

Stage
Basket

Stage
Basket

Secondaries
#10

AOS

Algorithm1
(scalar)

Algorithm2
(vector)

FieldTrack_v &

Track*

AOS

gather scatter

…

Where are we today?

• EM shower simulation
• Detector model at full complexity of a LHC experiment
• User interfaces integrated and tested by CMS (results @how2019)
• First demonstrator for reproducibility (see talk of Soon Yung Jun)

• Ongoing performance study
• Detailed comparisons: different GeantV modes and Geant4

• Preliminary set of conclusions including:
• Vectorization and locality: benefits and limitations
• Current limits of multi-threading in “basketizing” environments

4

What we compare

• Examples: simplified sampling calorimeter and a CMS simulation using
2018 geometry and 4T uniform field
• Complete set of models for e+, e-, !
• Geant4 running equivalent physics list, field, geometry setup and cuts
• Identical physics results, and equivalent #steps, energy deposits, particle yields

• GeantV: several configurations
• Field ON/OFF (uniform field, field map version not yet efficient)
• MT performance
• Single track mode (emulating Geant4 tracking) -> locality
• “Basketization” ON/OFF for different components -> vectorization gains
• Vector baskets dispatched to scalar code -> measure overheads

5

Preliminary performance: CMS example

• GeantV time performance improvement ranges from 1.9 to 2.1 depending on
configurations (see backup slide 17)
• Gains come from every component: geometry, physics, stepping management
• Hard to disentangle component gains from a “background" of more efficient

computation
• The most efficient CMS GeantV configuration with a uniform field gives a factor of 1.92
• The CMS experiment is working on realistic tests within the CMS simulation framework

• Global gains from vectorization and workflow can now be evaluated
• Vectorization benefits: up to 15% total time
• Basket workflow gains averaging at ~15% total time, with a large variance (0-30%)

dependent on CPU architecture
• The rest of performance gain coming mostly from instruction locality

• Analysis still ongoing, but performance counters showing far fewer instruction cache
misses compared to Geant4

6

Component and global performance figures

• Similar time fractions by category,
and very close number of FLOPS
(GV/G4)
• Geometry: important time reduction

due to VecGeom navigation
• Physics: more compact physics code

• Performance indicators better for
GeantV
• Computation intensity, CPU utilization
• Far fewer instruction cache misses

7

GeantV
Geometry

41%

GeantV
Physics
37%

GeantV
Other
22%

Geant4
Geometry

45%

Geant4
Physics
32%

Geant4
Other
23%

GeantV Geant4 GeantV/
Geant4

FLOPS (DP_OPS) 1.86E12 1.67E12 1.11

FLOPS Per Cycle 0.26 0.13 2.00

Instructions Per Cycle 1.06 0.80 1.32

FLOPS per Memory Op 0.56 0.33 1.70

L1 instruction cache misses 1/7.7

L2 instruction cache misses 1/2.2

TLB misses 1/11.2

Intel(R) Xeon(R) CPU E5-2620 0 @ 2.00GHz

Vectorization performance: CMS example
• Fraction (% total CPU time) of code vectorized so far rather small

• Physics: 7-11% final state sampling, 6-12% multiple scattering, 15-17%
magnetic field propagation

• Geometry: vectorized code in many branches (~4K volumes in CMS), not yet
efficient to basketize

• Important intrinsic vectorization gain factors from unit tests
• AVX2: Physics models: 1.3-2.5, geometry: 1.5-3.5, field propagation: ~2

• Visible vectorization gains in the total CPU time
• Physics models: no gain (but MSC: 2-5%), geometry: performance loss, field

propagation: 5-9%
• Performance loss in case of “small” hotspots (e.g. geometry volumes)

• Basketizing is efficient only when applied to “dense FLOP” algorithms
• Best basketized configuration in most recent tests brings ~10% (total CPU

time) on Haswell AVX2 for vectorized code weighting ~35% (~1.4x visible
speedup)

8

Locality from basketized workflow

• Hard to measure without comparing to equivalent stack-like approach
• Implemented a special “single track” mode, transporting one track at a time through

all stages (like Geant4)
• Performance counters showing increased instruction cache misses, but less data

cache misses

• Different levels of performance degradation in single track mode
• Ranging from 0-30% depending on machine topology/simulation configuration: to be

understood

• Only a small fraction of the performance improvement is due to basket
workflow
• Further analysis needed to disentangle all effects

9

Preliminary conclusions for single thread
performance
• GeantV uses fewer ‘clock cycles’ for the same number of FLOPs

• Better performance numbers overall: FPC, IPC, FPM

• Fewer cache misses at several levels (specially L1 instructions, L2). Note that in

basket mode instruction caches misses decrease, and data cache misses increase.

• The gains from workflow and vectorization explain only a small part of

performance increase, what about the rest?

• Simplified/more efficient code, library size, less deep call stack and less virtual calls –

just some of the possible reasons

• Quantifying these effects is very important

• The limits of applicability of the GeantV “basket” model now visible

• Very hard to obtain vectorization benefits without reasonable hotspots

10

Multi-thread performance

• Very different model compared to Geant4 MT
• A pool of shared events in flight (GeantV) compared to one event per thread

(Geant4)
• Sharing track workload among threads introduces overheads

• Event tails introduce inefficiency, exacerbated by MT
• The basket mode de-balances the work (winner takes all)

• Several improvements made to reduce serial part
• Work stealing queues, memory contention reduced

• Will investigate reducing track sharing at the expense of more tracks in
flight (more memory)
• Sets of events (owned by/having affinity to) threads
• May introduce tail problems

11

Current MT performance

• Larger memory footprint than G4, but
much more compact

• Code fitting L3 cache
• Data is pre-allocated in pools, producing

less memory fragmentation than Geant4
12

Peak memory dependence on #threads,
strong scaling, 10K electrons @10GeV

0

2

4

6

8

10

12

14

16

18

20

0 4 8 12 16 20 24 28 32

Sp
ee

du
p

#threads

Xeon(R) CPU E5-2630 v3 @ 2.40GHzScalar

Basketized

ideal

Ncores

numa
HYPERTHREADING

600

800

1000

1200

1400

1600

1800

0 50 100 150 200 250 300

RS
S

[M
By

te
s]

#nthreads

FullCMS, 10 GeV electrons

run initialization

Scalability for scalar and vector modes

Short-term work plan

• Deepen the performance analysis
• Identify the cause of the bulk (60-70%) of the total gain, and the dependence

on the architecture
• Understand better differences compared to stack-like (Geant4) mode
• Final fixes and consolidations for the beta release (now at pre-beta4)

• Understand the most profitable directions to work on to improve
Geant4
• Performance to be recovered by library restructuring (better fitting caches)
• Code simplification: physics framework and step management
• Better compromise between data and instruction locality, by adopting basket-

like workflow in certain areas

13

Outlook

• GeantV vs Geant4 time performance improvement is ~1.9 for a
standalone CMS application with a uniform magnetic field
• CMS evaluating performance but also integration effort

• Contributions from basket workflow and vectorization do not explain
the full gain, the major part is coming from improved instruction
cache use
• Improvements for individual components visible but so far hard to

disentangle from the profiling
• MT performance improved compared to previous versions, but still

not ideal
• The plan is to increase the event affinity to threads

14

Where do we go from here?

• The performance tag (beta) of GeantV demonstrator coming soon
• Fixes and consolidations already available in a series of pre-beta tags

• Detailed performance benchmarking underway.
• Conclusions are still preliminary
• Short term plan for extending the analysis

• Finalizing this performance study will outline the directions to go
• Technical document (facts, numbers and lessons learned) to be prepared
• What are the directions for adopting some of these benefits in Geant4

15

Backup

16

Some preliminary performance numbers

• 4kgauss/nofield = simulation in constant field (4 Tesla) or no field
• Basketizing: physics (final state sampling), multiple scattering and field
• Counters shown below:

• DP_OPS = Floating point operations; optimized to count scaled double precision vector
operations

• FPC = FLOPs per cycle
• IPC = Instructions per cycle
• FMO = FLOP’s per memory operation
• DCM, ICM = Data cache misses, instruction cache misses, shown as ratios

17

CPU time
[s] G4/GV DP_OPS FPC IPC FMO

TLB_DCM
G4/GV

TLB_ICM
G4/GV

L1_DCM
G4/GV

L1_ICM
G4/GV

L2_DCM
G4/GV

L2_ICM
G4/GV

GV-4kgauss 2722 1.92 1.86E12 0.26 1.06 0.56 0.74 11.16 1.38 7.63 0.55 2.24
G4-4kgauss 4987 1.67E12 0.13 0.8 0.33
GV-nofield 1758 2.10 0.25 1.1 0.51 0.71 24.97 1.28 16.65 0.56 1.99
G4-nofield 3668 0.13 0.85 0.32

Intel(R) Xeon(R) CPU E5-2620 0 @ 2.00GHz, cache size : 15360 KB, MemTotal: 32 GB

