

Putting together heterogeneous resources for scientific applications

L. Arrabito¹, <u>J. Bregeon</u>¹, S. Camarasu-Pop², P. Gay³, V. Hamar⁴, F. Hernandez⁴ and A. Tsaregorodtsev⁵ for the DIRAC@IN2P3 projeCt

Resources

DIRAC, the interware

- A layer between users and computing resources
- A software framework for building distributed computing infrastructures
- A rich set of **Systems** providing a complete solution for user communities
- Seamless integration of heterogeneous computing and storage resources
- Friendly user interfaces hiding the complexity of a distributed infrastructure

Base on the pilot jobs paradigm to

- Base on the pilot jobs paradigm for efficient user job execution and low failure rate
- Efficient application of resource usage policies for large communities
- Easy integration of heterogenous computing resources:
 - mecanisms of **plugins** for integration and job **tags** for allocation
 - grids operated with various middleware (CREAM, ARC, Globus)
 - clouds, private and commercial, from different providers (VMDIRAC)
 - HPC supercomputers and GPU nodes (through ssh, handles multicore jobs)
 - ad-hoc computing clusters (ssh, HTCondor...)
 - volunteer resources (BOINC)
 - containers on worker nodes (Singularity)

LFC Service DataManager SE1 DFC Service FileCatalog StorageBase SE2 Transformation Service SE3

Data Management System

- Based on the abstraction of Storage Elements and File Catalogs
- Allows to present physically distributed user data as a single logical file system
- Implementation of abstract models available for most of the modern data storage technologies and several file catalog services
- The **DIRAC File Catalog** is both a replica and user metadata catalog that allows complex data models specific to user communities

Transformation (TS) and Production Systems

- A **Transformation** is a **recipe** (task) applied automatically to data identified by a **filter** on their metadata
- Chaining transformations creates (meta) data driven workflows
- A **Production** is defined as a coherent set of **Transformations**, monitored and managed through a common interface

Standard user level and advanced programmatic interfaces

- Extensive command line tools: e.g. dirac-wms-job-submit, ...
- Python API: e.g. dirac.submit(job), ...
- REST interface for an essential subset of services
- Web portal providing views and interaction with the main systems
- User experience based on a paradigm of a single large scale computer:
 - Logical Computing and Storage elements (Hardware)
 - Global logical name space for data (File System)

Community based open source development on github/DIRACGrid

- Plugin mecanism, software modularity, new features upon user requests
- Software managed by the **DIRAC consortium** of users and developers
- Adopted by multiple collaborations in High Energy Physics, Astrophysics and other scientific domains for an ever increasing number of use cases

FRANCE GRILLES

acific rthwest

Pacific Northwest NATIONAL LABORATORY

IHEP

KEK

Multi-community DIRAC services available

- Supported by grid infrastructure projects: France-Grilles, GridPP, EGI, JINR ...
- Ideal for small user communities to benefit from the advantages of the DIRAC interware
- Example of the France-Grilles DIRAC service, hosted at CC-IN2P3:
 - First multi-community installation put in production in 2012
 - resources through ARC, CREAM, HTCondor and ssh access to farms with GPUs
 - distributed team of administrators from several universities and CNRS labs
 - multiple active communities: biomed, complex-systems, vo.france-grilles.fr, ...
 - > 25M jobs executed in 2018 at 90 different sites

CPU days used by UserGroup

52 Weeks from Week 08 of 2018 to Week 09 of 2019