Using DODAS as deployment manager for smart caching of CMS data management system

Tracolli Mirco on behalf of CMS collaboration and DODAS team

ACAT 2019 - Saas Fee, Switzerland
Outline

- Introduction to **CMS data** cache in the context of future **WLCG Data Lake**
- **Intelligent data-cache** operations
 - Machine Learning based strategy
- **DODAS** as enabling technology for **Machine Learning as a Service**
 - Architecture and key features
- **Proof-of-Concept** workflow
 - From raw data reduction and ML model training to inference
 - Integration with the cache middleware
- Conclusions
Data cache at CMS

- The current CMS Data Management model has a meshed hierarchical centrally managed storages at computing sites (Tier).

- WLCG towards a data-lake model:
 - Fewer world-wide centers with custodial data
 - Heterogeneous set of resources accessing custodial data remotely

- A key element of future data lake will be the data cache layer that aims to:
 - Make remote access to data more efficient
 - Mitigate the amount of request to custodial data
Smart cache management: why

A **smart cache layer management** will improve the computing model with:

- **Enhanced CPU efficiency**
 - Thanks to I/O latency reduction of remote access

- **Reduced required disk space**
 - **Smart data pre-placement** on cache
 - Optimized data eviction
 - Use of diskless resources (Cloud and HPC)

- **Lowered operational costs:**
 - Leveraging real time routing and caching decision

Foresee the possibility to **dynamically deploy cache systems on opportunistic sites.**
Our strategy to enable smart caching

- Training with Machine Learning techniques
 - Over historical data (~40Gb) about usage of CMS computing resources
 - Using specific information such as data popularity

- Collecting real-time information to Improve training:
 - Network status, Network topology, Workflow type...

- Achieve a solution that:
 - Enables autonomous management of cache content
 - Manages real-time Quality of Service (dynamic routing, SSD over HHD etc.)
 - Selects the best route for the data

This presentation will focus on the workflow environment implementation.
Workflow overview

The environment is composed by independent modules:

- Pre-processing
- Training
- Inferencing (end-user service)

Each module provides a specific service for the ML toolchain. The aim is on a highly generic implementation of these building blocks. DODAS (see later) allows this achievement creating a platform for this model:

- On “any” cloud provider with a minimal effort
- Enabling self-healing and scale-up capabilities
DODAS as enabling technology

Dynamic On Demand Analysis Service is an Open source project for creating analysis container based clusters on-demand on any cloud infrastructure (details on next slide) with almost zero effort:

- just a simple configuration file with an end-to-end deployment in ~15 min.

DODAS provides container-based solutions to instantiate:

- Clusters for Big Data tasks:
 - Hadoop cluster
 - Spark cluster
 - Generic ML frameworks (Including both Training and inference)

- HTCondor batch system as a service
DODAS will be used to implement a smart cache decision service because it allows to compose automatically the blocks of the toolchain.
The CMS available logs are the key to the success of the model development.

A primary data source is historical data of infrastructure utilization:
- **Data logs** are in JSON format, stored in a Hadoop file system and serialized using Avro.

The secondary data source are real-time information:
- Info of hardware, clusters, network and the cache system (content and status)
- Streaming information feed

The Data Manager can be used by end-users to pre-fetch data into DODAS environment or to get a stream of data in real-time.
Pre-processing step

- **Spark** is a part of DODAS deployment and end-users have access to it when DODAS is up and running
 - Technicalities are transparently handled by DODAS

- The service is completely transparent to the user, **Mesos** will manage the Spark’s job.
Training models over reduced data

- Reduced data are automatically available for training ML models
- The developed environment is ready with the most used ML frameworks:
 - Jupyter, Keras and TensorFlow
 - Highly customizable: e.g. Intel BigDL framework has been added to use alongside Spark for the training phase.

The output of this phase is a model to use in the inference step.

Trained model is automatically loaded into the inference service.
Performing Inference

The inference service is implemented using the **CMS TFaaS**, embedded in DODAS. It is a **Software as a Service** based on the **TensorFlow framework** for Machine Learning and exposes an **API** through the **HTTP** protocol:

- **/models**: to view existing models on TFaaS server
- **/json**: to serve TF model predictions in JSON data-format
- **/upload**: to push a model to TFaaS server
- **/delete**: to delete your model

Inferencing with TFaaS

Call the model: curl -X POST http://tfaas/json -d @data.json -H "Accept: application/json" -H "Content-Type: application/json"

Result:

{"labels": [{"label": "a", "probability": 1}, {"label": "b", "probability": 2.815438e-8}, {"label": "c", "probability": 4.65911e-18}]}
Integration with Data Cache

- The plan is to **extend the XRootD cache** (XCache) with a specific plugin which queries against the developed **AI Service**
 - The TFaaS endpoint

Runtime information are used to **continue the training of the model**
Conclusion

- A proof-of-concept implementation to enable smart data cache at CMS has been shown
 - The first tests of full workflow are promising
 - Research and develop a model for the proposed problem
 - Study the performances
 - Benchmark the model also through simulation
 - Usage of DODAS as technology to Abstract underlying infrastructure, scalability, automation and self-healing
 - The DODAS based smart decision service is completely generic
 - Customizable and thus reusable for similar use cases
End of presentation
“Cloud is about how you do computing, not where you do computing.”

Paul Maritz, CEO of VMware
Backup