

Cross-domain Data Access System for Distributed Sites in HEP

Qi XU (IHEP-CC, Chinese Academy of Sciences)

2019-3-11

IHEP-CC

Outlook

- □ Data Storage in HEP
- **■** Motivation
- ☐ System Architecture
- ☐ Performance Test
- **□**Conclusion

Data Storage in HEP

BESIII Experiment Data > 100TB/year

Daya Bay Experiment Data > 400TB in Total

Yangbajing Experiment Data > 200TB/year

LHAASO Experiment Data > 2PB/year

Data Storage in HEP

- □ Distributed Sites in HEP.
- □ Large-scale Data Sharing.
- Batch Mode with High Latency Response.
- □ Computing and Scheduling Based on Files.

Motivation

- ☐ Current data sharing mode is hard for unified management.
- ☐ A huge consumption of resources: network, storage and CPU.
- ☐ Hard to seek and read events based on files, scheduling is not flexible.
- □ Long time to get response in batch mode, inefficiently.

Motivation

Test 1: Analysis Based on File System Log File Size is 478.75MB, Read 22MB, Read Ratio 4.6%

Motivation

Test 2: Throughput Test of Traditional Distributed File System with Different Latency in WAN

Streaming Transmission & Cache Service in Cross-domain Data Access

System is Consist of Three Loose Coupling Unix Services

☐ CacheD: Consists of three parts: MetaD, DataD and Daemon Process.

TransferD: XrootdProtocol

☐ File Plugin: Similar to POSIX File System API

The structure of the cross-domain data access system

MetaD: Storage and Management for metadata

Fileid Parent_fileid: Uniform File View

Bitmap: On-deman Data Access

13

Daemon Process: Concurrent Message Process

DataD: Storage for Cache Files

15

2019-3-11 IHEP-CC Cache File (Cache Server)

TransferD: Xrootd Protocol

Optimization

- ☐ Multiple streams are supported on a single socket.
- ☐ Clients can be redirected to another server at any time.
- ☐ Clients may be asked to delay server contact.
- ☐ Clients may piggy-back read-ahead lists with any read request.
- ☐ Servers may ask clients to perform certain actions at any time.

File Plugin: Similar POSIX File System API

int cdas_open() Open file (OW/OR)

int cdas_close() Close file (Auto)

int cdas_getattr() Get metadata from remote site

int cdas_read() Read file (Transfer data block, if not cached)

int cdas_access() Whether file is accessible

int cdas_opendir() Open directory, get DIR_ID

int cdas_readdir() Read directory (Metadata of files in it)

int cdas_rfsync() Sync files to remote site

int cdas_refresh() Update cache files

int cdas_unlink() Delete cache files

I/O Performance of Lustre EOS and the System are Tested in Bandwidth 1000Mbps

Read performance (Throughput) of different file system (MB/s)

Network Delay (ms)	Lustre	EOS	CDAS (file not cached)
0	79.85	30.12	110.10
1	45.93	7.26	110.25
10	13.87	1.03	103.13
100	1.49	0.12	24.46

I/O Performance with Network Delay Jitter is tested in Bandwidth 1000Mbps

The change of I/O performance with different network delay

Test of Command Line Interface

- ilist: show metadata of files in the remote site.
- □ idelete: delete metadata or data blocks of files in cache.
- □ iget: get data blocks of files from the remote site.
- □ iput: put new files to the remote site.

```
[root@bigdata07 client]# ./ilist -l /xrootdD
                                          104857600 Nov 22 11:21 100ce ul
 rw-----
            1 root
                        root
                                          104857600 Nov 22 11:34 100cs ul
            1 root
                        root
            1 root
                        root
                                          104857600 Jun 07 20:50 100m
                                          104857600 Nov 22 20:48 100mb ul
            1 root
                        root
            1 root
                        root
                                          104857600 Nov 18 17:17 100mm
            1 root
                                          104857600 Sep 23 21:28 100upup ul
                        root
            1 root
                        root
                                          104857600 Sep 23 21:43 100upupup ul
                                          104857600 Nov 22 13:06 101 ul
            1 root
                        root
                                                  0 Nov 22 16:54 110 ul
            1 root
                        root
                                                  5 Sep 24 17:28 1728
            1 root
                        root
                                         104857600 Sep 24 17:54 lup ul
            1 root
                        root
           1 root
                                         2147483648 Nov 18 15:41 2000m
                        root
            1 root
                        root
                                          209715200 Nov 18 15:43 200m
            1 root
                        root
                                                  0 Nov 22 20:49 200mb ul
                                                  0 Nov 22 13:21 202 ul
            1 root
                        root
                                                 28 Sep 24 17:27 ceshi
            1 root
                        root
                                          104857600 Sep 14 13:55 ceshi100
            1 root
                        root
                                                 64 Nov 06 15:49 dir
           1 root
                        root
                                                 27 Sep 23 21:23 upup ul
rw----- 1 root
                        root
```

```
[root@bigdata07 client]# ./iget -fvm /xrootdD/100m /tmp
DEBUG: Cache file: /cdfs_data/0/429546d7-a073-4a9b-a3fa-3b03db0f401b filesize 104857600
10485760 bytes 67.61 MB/sec avg 67.61 MB/sec instDEBUG: read 10485760 bytes of size 10485760
DEBUG: read 10485760 bytes of size 10485760
```

Conclusion

- Streaming Transmission and Cache Service are adopted to the system.
- ☐ The system is consist of TransferD, CacheD and File Plugin.
- ☐ Cross-domain data access is localized and transparent for users in the system.
- □ Data access is on demon and effective in the system.
- Excellent I/O performance of the system with high network latency in WAN.
- Stable I/O performance of the system with Network Delay Jitter.
- ☐ Make the most of resources in distributed sites.
- ☐ The system is suitable for cross-domain data access between distributed sites.

Thank you for your attention