Track 1 - Summary

ACAT 2019. Saas-Fee. March, 11-15

Conveners: Patricia Mendez Lorenzo & Gordon Watts

Track 1: Highlights

- * 39 oral -> 780 min of Computing Technology for Physics Research
- * 40 posters
- * >50 persons per session

Parallel evolution

Central messages

* Run3 contained, HL-LHC explotes

Instantaneous luminosity X 5-7 particles per collision x 5 more data x 15 more granular detector x 10 readout channels

- * Funding agencies will not "assist" in this explosion
 - * HL-LHC data paradigms unsustainable with flat budget
 - * No accelerator HW —> no allocations
- * BUT: computing workflows have made little use of heterogeneous resources

Let's be more concrete

Good bye LHCb Let's welcome LHCb New data formats: NanoAOD(CMS), Turbo(LHCb) New detector interfaces: FELIX (ATLAS)

C++20 (or C++2.0) New ROOT implm. GeantV

Implementation of ML and heterogeneous HW at all levels

Data paradigm in the Grid: Data-Lake Workflow can always improve: Containers

Highlights from experiments (1)

* Good-bye LHCb, hello LHCb

- * 5-fold increase instantaneous lumi
 - * 4x10^32 -> 2x10^33 (cm^-2s^01)
- * Full SW trigger at 30MHz inelastic collision rate

- * New SW based HLT (sync. HTL1 + async. HLT2)
 - * Replacement of a HW based HTL by a new SW based HTL
 - * Allen FW for HTL1 for GPUs usage with visible impacts in the memory handling, scalability, data access and cost reductions
 - * Physics Analysis based in the information provided at trigger level with no raw data access
- * Turbo paradigm for reduction of event data format
 - * Keep of each event as much as needed (similar approach in CMS)
 - * Reduction of the output data rate in a factor 2 (Run2 using 30% of events in Turbo to 70% expected in Run3) —> Only high-level reconstructed information is saved to offline (no raw)
 - * Only 26% of data will still be kept in full stream mode (no raw)
 - * 6% raw kept for calibration purposes

Highlights from experiments (2)

- * Changes in the core Sw structure: GAUDI
 - * Re-engeniering needed to cope with previous quantities
 - * Multi-threading and multi/many cores structures supported
 - * New scheduler and a re-design of the data structures towards optimisation of memory resources and speed-up of data access

Highlights from experiments (2)

- * From MiniAOD (Run2) to NanoAOD(Run3): New Data Format for CMS ~1 MB
 - * More portable and scalable approach
 - * Maximal flexibility to define contains
 - * ntuple-like format including relevant information for most of the generic analysis
 - * 50% of analysis expected with NanoAODs
 - * Full MiniAODs under transformation to NanoAODs

Highlights from experiments (3)

- * HCAL/ECAL Calorimeters: from >85K to >91k channels in Run3
 - * Current situation: calorimeters take 20-25% of reco time
 - * Towards implementation of GPUs for parallelisation purposes —> very promising results
 - * Testing FPGAs —> work still ongoing
- * Global effort in CMS to exploit power of heterogeneous computing —> Modelling needed for improving the accuracy of CMS computing resource needs for HL-LHC
 - * Initial group setup for the evaluation of data usage and justification of changes in the data model

Highlights from experiments (5)

- * ATLAS: parallel evolution of the systems to cope with the new experiment upgrades:
 - * phase I (Run3) and phase II (Run 4)
- * Evolution of the ATLAS SW system
 - * Software system: From PANDA to ProdSys2
 - * Support of HPCs and Clouds
 - * PAQ level: ML techniques
 - * Anomalies detection
 - * Connection instabilities
 - * FELIX system: the interface between the data acquisition; detector control and TTC (Timing, Trigger and Control) systems; and new or updated trigger and detector front-end electronics
 - * Phase I requirements already fulfilled

Pushing the brain: New ideas

- * Automated and Intelligent Data Migration Strategy for HEP storage
 - * Model based the prediction of future file access using deep learning algorithms and labelling data based on their access (hot/warm/cold)
- * FPGA and accelerated machine learning inference as a service for HEP computing

ML power for physics processes

Parallelization approches

Computing challenges

- * Recast physics problems as ML problems taking advantage of the acceleration of such processes in specific HW: GPU, FPGAs, ASICs
- * Promising results from a proof-of-concept on cloud FPGA (Brainwave)
 - * large computing tasks: >100 benefict over CPU only
 - * latency-limited tasks (HTL): suitable for closer clouds and edge solutions

We cannot forget

- * C++20 in 2020 (or c++2.0): Programming will never be the same
- * PyROOT (ROOT Python bindings) modernisation:
 - * New implementation of PYROOT based on Copyy
 - * Interoperability with the Python data science ecosystem tools (Numpy and pandas)
 - * coexistence and co-support of python 2 and 3 per each build
- * Simulation: GeantV: performance tag (beta) of GeantV demonstrator coming soon

There is physics beyond LHC

- * Nuclear physics (Jefferson Lab)
 - * Pescription of JANA2 as multi-threaded event reconstruction framework (c++11)
- * STAR Data Production Workflow on HPC

Grid evolution: Vata-Lake

- * Main challenge in HL-LHC is Storage
 - * Pata-Lake is the evolution of the current WLCG infrastructure in terms of data handling towards the optimisation of storage costs

* EUlake prototype: revise concepts of redundancy, caching, interoperability and reproducibility

* Cashing prototype: DODAS

* Workflow: Containers solution for ATLAS

ACAT 2019. TI Summary