Track 1 - Summary ACAT 2019. Saas-Fee. March, 11-15 Conveners: Patricia Mendez Lorenzo & Gordon Watts #### Track 1: Highlights - * 39 oral -> 780 min of Computing Technology for Physics Research - * 40 posters - * >50 persons per session # Parallel evolution #### Central messages * Run3 contained, HL-LHC explotes Instantaneous luminosity X 5-7 particles per collision x 5 more data x 15 more granular detector x 10 readout channels - * Funding agencies will not "assist" in this explosion - * HL-LHC data paradigms unsustainable with flat budget - * No accelerator HW —> no allocations - * BUT: computing workflows have made little use of heterogeneous resources #### Let's be more concrete Good bye LHCb Let's welcome LHCb New data formats: NanoAOD(CMS), Turbo(LHCb) New detector interfaces: FELIX (ATLAS) C++20 (or C++2.0) New ROOT implm. GeantV Implementation of ML and heterogeneous HW at all levels Data paradigm in the Grid: Data-Lake Workflow can always improve: Containers # Highlights from experiments (1) * Good-bye LHCb, hello LHCb - * 5-fold increase instantaneous lumi - * 4x10^32 -> 2x10^33 (cm^-2s^01) - * Full SW trigger at 30MHz inelastic collision rate - * New SW based HLT (sync. HTL1 + async. HLT2) - * Replacement of a HW based HTL by a new SW based HTL - * Allen FW for HTL1 for GPUs usage with visible impacts in the memory handling, scalability, data access and cost reductions - * Physics Analysis based in the information provided at trigger level with no raw data access - * Turbo paradigm for reduction of event data format - * Keep of each event as much as needed (similar approach in CMS) - * Reduction of the output data rate in a factor 2 (Run2 using 30% of events in Turbo to 70% expected in Run3) —> Only high-level reconstructed information is saved to offline (no raw) - * Only 26% of data will still be kept in full stream mode (no raw) - * 6% raw kept for calibration purposes # Highlights from experiments (2) - * Changes in the core Sw structure: GAUDI - * Re-engeniering needed to cope with previous quantities - * Multi-threading and multi/many cores structures supported - * New scheduler and a re-design of the data structures towards optimisation of memory resources and speed-up of data access # Highlights from experiments (2) - * From MiniAOD (Run2) to NanoAOD(Run3): New Data Format for CMS ~1 MB - * More portable and scalable approach - * Maximal flexibility to define contains - * ntuple-like format including relevant information for most of the generic analysis - * 50% of analysis expected with NanoAODs - * Full MiniAODs under transformation to NanoAODs # Highlights from experiments (3) - * HCAL/ECAL Calorimeters: from >85K to >91k channels in Run3 - * Current situation: calorimeters take 20-25% of reco time - * Towards implementation of GPUs for parallelisation purposes —> very promising results - * Testing FPGAs —> work still ongoing - * Global effort in CMS to exploit power of heterogeneous computing —> Modelling needed for improving the accuracy of CMS computing resource needs for HL-LHC - * Initial group setup for the evaluation of data usage and justification of changes in the data model # Highlights from experiments (5) - * ATLAS: parallel evolution of the systems to cope with the new experiment upgrades: - * phase I (Run3) and phase II (Run 4) - * Evolution of the ATLAS SW system - * Software system: From PANDA to ProdSys2 - * Support of HPCs and Clouds - * PAQ level: ML techniques - * Anomalies detection - * Connection instabilities - * FELIX system: the interface between the data acquisition; detector control and TTC (Timing, Trigger and Control) systems; and new or updated trigger and detector front-end electronics - * Phase I requirements already fulfilled #### Pushing the brain: New ideas - * Automated and Intelligent Data Migration Strategy for HEP storage - * Model based the prediction of future file access using deep learning algorithms and labelling data based on their access (hot/warm/cold) - * FPGA and accelerated machine learning inference as a service for HEP computing ML power for physics processes Parallelization approches Computing challenges - * Recast physics problems as ML problems taking advantage of the acceleration of such processes in specific HW: GPU, FPGAs, ASICs - * Promising results from a proof-of-concept on cloud FPGA (Brainwave) - * large computing tasks: >100 benefict over CPU only - * latency-limited tasks (HTL): suitable for closer clouds and edge solutions ### We cannot forget - * C++20 in 2020 (or c++2.0): Programming will never be the same - * PyROOT (ROOT Python bindings) modernisation: - * New implementation of PYROOT based on Copyy - * Interoperability with the Python data science ecosystem tools (Numpy and pandas) - * coexistence and co-support of python 2 and 3 per each build - * Simulation: GeantV: performance tag (beta) of GeantV demonstrator coming soon ### There is physics beyond LHC - * Nuclear physics (Jefferson Lab) - * Pescription of JANA2 as multi-threaded event reconstruction framework (c++11) - * STAR Data Production Workflow on HPC #### Grid evolution: Vata-Lake - * Main challenge in HL-LHC is Storage - * Pata-Lake is the evolution of the current WLCG infrastructure in terms of data handling towards the optimisation of storage costs * EUlake prototype: revise concepts of redundancy, caching, interoperability and reproducibility * Cashing prototype: DODAS * Workflow: Containers solution for ATLAS ACAT 2019. TI Summary