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1. Tracking and online event processing

* Tracking represents one of the most time-consuming parts in reconstruction

 Very rich session:

* Parallelized Kalman-Filter-Based Reconstruction of Particle Tracks on Many-Core
Architectures with the CMS Detector

* HEP.TrkX Charged Particle Tracking using Graph Neural Networks

hls4ml: deploying deep learning on FPGAs for trigger and data acquisition
ConformalTracking: a geometry agnostic tracking library

A 3D Track Finder for the Belle Il CDC L1 Trigger

Charged Particle Tracking as a QUBO problem solved with Quantum Annealing-Inspired
Optimization

* Real-time reconstruction of long-lived particles at LHCb using FPGAs

* A hybrid deep learning approach to vertexing

* Belle2VR - An Interactive Virtual Reality Visualization of GEANT4 Event Histories



Resource usage: DSPs

¢ DSPs (used for multiplication) are often T T—— Jra—

limiting resource
S 4 I I l - maximum use when fully parallelized

- DSPs have a max size for input (e.g.
27x18 bits), so number of DSPs per
multiplication changes with precision
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Tracking-1

geometry agnostic tracking library by Marko
Petric: Conformal map applies a geometry
transform that maps circles in the x,y plane
passing through the origin point into straight
lines in the u,v plane. Designed for CLIC, but also
works with different detectors e.g. FCCee CLD
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3D Track Finder for the Belle Il by Sebastian Skambraks:

- The novel triggering techniques copes with the
severe background conditions coming along with
the upgrade of the instantaneous luminosity by a
factor of 40

- precise drift-time information of the central drift
chamber + neural network trigger

- 3D finder (single hit representations in the Hough
plane are trained using Monte Carlo)

- This 3D finder enables an improvement of the
track finding efficiency by including the stereo
sense wires as input.

Sectors in pt (left) and in 9 (right).


https://github.com/iLCSoft/ConformalTracking/

Tracking-2

Quantum Annealing tracking by J-R. Vlimant:

Quadratic Unconstrained Binary Optimization
(QUBO) can be mapped to an Ising Hamiltonian
with change of variable {0,1}«{-1,1}
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Real-time reconstruction of long-lived particles at LHCb

using FPGAs by Michael Morello.

Study of the performances of a future innovative
real-time tracking system based on FPGAs, R&D
developed in the context of the LHCb Upgrade Ib (LHC

Run 4) dedicated to reconstructing particle

downstream of the magnet in the forward tracking

detector.
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mkFit efficiency: mkFit validation
[} L]
Parallelised Kalman Filter =z
. tt (PU=70)
o Algorithm-level efficiency, for long tracks
- mkFit is at least as efficient as CMSSW

Build Track Efficiency vs Sim P, (pr > 0.0 GeV/c} Build Track Efficiency vs Sim n (pY > 0.9 GeV/c}
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Mario Masciovecchio (UCSD), 11 March 2019
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https://indico.cern.ch/event/708041/contributions/3269689/attachments/1809414/2955052/MkFit_Mario-Masciovecchio_ACAT2019.pdf

Neural Networks
Tra C kl n g W I t h G ra p h N N . Inp:lfl_'l-‘:]t::grrr:ﬂl(s from hit features (r,¢ , z) to the node latent Edge Network

representation (N for 8 to 128) o
+ Dense : 3—...—N

* Edge Network .
> Predicts an edge weight from the node latent
representation at both ends
+ Dense : N+N—...—1 Node Network

4 — EdgeNet(®,®)

* Node Network .

» Predicts a node latent representation from the current
node representation, weighted sum of node latent

representation from incoming edge, and weighted sum —

® Dense N+N+N—>—)N ©® « NodeNet(® @4+0 @ +0&+ )

self incoming outgoing

Node & Edge Representations Performance

Low density
acc. x eff. ~97%

m I Nadumesnsity

acc x eff. ~90%

High density
acc. x eff. ~ 33%

Latent edge representation taken to be the classification score
instead of some latent vector representation



Hybrid Deep learning vertexing by H. Schreiner
;
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Proof-of-Principle established: 5-layer CNN finds primary vertices with efficiencies and

false positive rates similar to traditional algorithms.
Efficiency is tunable; increasing the efficiency also increases the false positive rate due

to Asymmetric cost function
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Belle2VR: An interactive virtual reality
visualization of GEANT4 event histories (Leo Piilonen)

https://vimeo.com/220004044
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https://vimeo.com/220004044

2. Simulation and Event Reconstruction

- Recurrent GANs for particle-based simulation at the LHC

- Fast Data-Driven simulation of Cherenkov Detectors Using Generative Adversarial
Networks.

- Physics inspired feature engineering with Lorentz Boost Networks

- Reinforced Jet Grooming

- Constructing mass-decorrelated hadronic decay taggers in ATLAS

- Towards the Increase in Granularity for the Main Hadronic ATLAS Calorimeter:
Exploiting Deep Learning Methods

- Energy reconstruction of the ATLAS Tile Calorimeter under high pile-up conditions
using the Wiener filter

- Electromagnetic calorimeter reconstruction in Belle Il

- Selective background Monte Carlo simulation at Belle Il



GAN-based Simulation

T. Nguyen showed how to use
conditional GANs to generate list of
particles mimicking particle-flow
candidates. Can be used directly by
reconstruction algorithms and to
generate pile-up. Different layers are
pre-trained, then inserted into the
GAN generator.

p: distribution for charged particles
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DCGAN were also used (P. Gaspar ) to
reproduce showers within the high
granularity upgrade for the ATLAS
calorimeter. In order to insure high
quality images, GAN output is run
through an additional CNN classifier.
Results show a 11-14% agreement
with Geant4 simulation
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Another GAN application was
presented by A. Maevskiy to the
simulation of the LHCb RICH detector.
Cranmer distance is used to train a
fully connected layers GAN and
stabilize the gradients
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Reconstruction: Machine Learning and Jets

Large array of literature on ML for jets, and we saw new tools developed to
include physics knowledge, constrain classifiers, or learn to groom them!

F. Dreyer introduced a grooming
procedure for iteratively
removing soft-wide angle
radiation from jet, can be
learned using a reinforcement
learning paradigm
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Y. Rath discussed Lorentz Boost
Networks, physics inspired
architectures Able to
autonomously create
characteristic features from
particle four momenta with
physics interpretability
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A. Sogaard compared several
methods for constraining sculpting
effects on data from models, and
examined the performance vs
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Energy Reconstruction: Calorimeters

D. Gongalves presents the
Wiener Filter - algorithm for
energy estimation in the ATLAS
Tile Calorimeter under high
pile-up conditions.
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S. Ferber discussed the Belle Il ML
offline reconstruction algorithm
tested on the data taken in 2018.
Demonstrated improvements in

energy and position
reconstruction.

electron efficiency
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| Belle Il Simulation (work in progress)
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M. Ritter presented method of
predicting in the early stages of the
simulation process the likelihood of
relevancy of an individual event to
the target study using
convolutional neural networks.

Generate Simulate Reconstruct Skim » Analyse
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3. Statistics and Uncertainty

- Incorporation of Systematic Uncertainties in the Training of Multivariate Methods
- Global fits of BSM physics models with Gambit

- INFERNO: Inference-Aware Neural Optimisation

- Uncertainty reduction by gradient descent

- Full Event Interpretation at Belle Il

- Adversarial Neural Network-based data-simulation corrections for jet-tagging at CMS

- Reinforced Sorting Networks for Particle Physics Analyses

- Variational Autoencoders for New Physics Mining at the Large Hadron Collider

- Excursion Set Estimation using Sequential Entropy Reduction for Efficient Searches for
New Physics at the LHC

- Machine Learning on sWeighted data

- Variational Dropout Sparsification for Particle Identification speed-up



Analyzing Whole Events

New mechanism explored for analyzing events wholistically!

Which reconstructed objects
should be assigned to which
truth-level object for event
reconstruction? D. Noll discussed
doing this with reinforcement
learning for sorting!
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W. Sutcliffe utilized a group ot
O(200) decay channel classifiers to
reconstruct O(1000) decay chains
for tag-side B-reconstruction at
Belle Il. Saw factor of 3 gains in
efficiency when applied to Belle
Data!

O. Cerri explored how the latent
space of a variational autoencoder
learned to reconstruct the SM may
help identify anomalous events, as
a model-independent trigger
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Systematic Uncertainties

How to deal with systematic uncertainties (i.e. known unknowns about the data)

when building a model?

For BDTs, T. Alef showed how to
augment the AdaBoost
algorithm to try to enforce
invariance to data shifts to
systematics at training time

Significance

SF-Net

SF(jet)

B. Fischer showed how adversarial
technique, used in the past to
enforce invariance to systematics,
can be used to derive correction
factors for simulations with DeepSF

V. Estrade compared techniques,
including Adversarial NNs, gradient
constraints, and INFERNO to study
sensitivity to systematics in
parameter estimation

Learning 1
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Parameter Inference
How best to extract a parameter of interest or determining a confidence interval?

INFERNO, presented by P. de
Castro, aims to learn non-linear
summary statistics by directly
minimizing an approximation of
the expected profiled (or
marginalised) interval width
accounting for the effect of
nuisance parameters

L. Heinrich used active learning to
determine where to best sample
new theory points for finding limit
contours, based on looking for
points that will maximize the
expected information gain

cross-entropy
inference-aware

1.75

1.50

il

GP #0 GP #1

performs global BSM fits to a wide
array of analyses, including
Collider, DM, Flavour Physics, and | . SSSSSSSSEEE SN ERS————
03 @ s s 7 | Precision EW data. 19
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Machine Learning on sWeighted data, N. Kazeev
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Variational Dropout Sparsification for Particle
|dentification speed-up

A.Ryzhikov suggests using Bayesian ) O]
NN that gives hints which NN WA i v N
Welghts could be. removed => (H_.“]f ('h_;) (@ Y @ m‘{j i
inference speed increased. e T il P>
o.l_\ ‘“»..,,,__\ 0'.‘1.:#/0'.3 IL.4 : > :
Significant improvement for LHCb \ A N\
PID! & & O
Method | # Neurons | Electron | Ghost | Kaon Muon Pion Proton | Speed-Up
6xDNN | 45-48 0.9855 0.9485 | 0.9148 | 0.9844 | 0.9346 | 0.9178 | x1
1IxDNN | 150 0.9863 0.9570 | 0.9145 | 0.9889 | 0.9463 | 0.9167 | x1
Ternary | Auto 0.9843 0.9435 | 0.9154 | 0.9834 | 0.9352 | 0.9110 | x5
1xDNN | 30 0.9871 0.9557 | 0.9158 | 0.9893 | 0.9427 | 0.9125 | x5
BDNN | Auto 0.9881 | 0.9548 | 0.9244 | 0.9896 | 0.9509 | 0.9228 | x16

qithub


https://github.com/HolyBayes/pytorch_ard

. New Physics, Cosmic

Weak signal extraction using matrix decomposition

Particle Identification in PICO Using Semi-supervised Learning
Accelerating dark matter search in emulsion SHiP detector by Deep
Learning

Electromagnetic-shower generation with Graphical GANs
Submanifold Sparse Convolutional Networks for Sparse, Locally Dense
Particle Image Analysis

Air shower reconstruction with hexagonal convolutional neural
networks

Deep Learning based Algorithms in Astroparticle Physics



Weak signal extraction using matrix decomposition

Steven Prohira shower created in the
target (HDPE)
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https://indico.cern.ch/event/708041/contributions/3269755/attachments/1811129/2958147/acat2019prohira.pdf

Dark matter search experiments

Search for WIMP interactions requires a bit of ML

For the PICO experiment G. Cao presented S. Shirobokov presented ML-based search for SNL
comparison of traditional approach - frequency traces in SHiP experiment
analysis in Fourier space with semi-supervised
discriminator. iSHIP structure View of a shower in emulsion  View of a shower in TT
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Electromagnetic showers

From DM to cosmic

V. Belavin presented Graphical generative L.Domine presented Sparse convolution-based
models - dual generation of Graph and signal approach for MicroBooNE (LArTPC) experiment. Trains
within it for SHiP experiment. faster, requires way less memory.
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https://osf.io/9b3cv/

Addressing scheme

Kernels

Cosmic particles meet DL

C. Steppa presented the way to adapt
convolutional layers to hexagonal sensors of
HESS and CTA telescopes for air showers

reconstruction.

Convolution

Pad

hexconv = hexagdly.Conv2d(in channel = 1,
out_channel = |,

Example

C = hexconv(H)
RoC

—— Diffuse AUC = 0.98891
—— Point source AUC = 0.99301 |

0.0

02 04 06 o8 10
FPR

kernel size =
stride = 2,

bias = False,
debug = True)

log(E_Rec [TeV])

s 00 05 _ 10
log(E_True [Tev])

1,

Appl Hexa DL

- ]

Amplitude

J.Glombitza presented fireworks of ML-based
techniques for variety of astrophysics experiments:

Neutrino reconstruction for Ice Cube
Reconstruct binary black hole signal with
denoising autoencoders

LArTPC images segmentation for MicroBooNE
Simulation Refinement

. Deep Learning
BBH GW with Peak SNR 0.50
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Summary

Enlightening session and consistent representation of the current state
of the art! (ML at HEP)

Good focus on
Model robustness (uncertainty estimation)
Wholistic approach for event analysis

Bayesian approach is heavily underrepresented wrt Frequentist (GAN)
ML/DL Panel to be transcribed and made available

Thanks to all the presenters and attendees!

Apologies for all the work that could not be properly mentioned in a
20-minutes summary
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Active Learning for Excursion Set Estimation
Kyle Cranmer, Lukas Heinrich, Gilles Louppe
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Uncertainty reduction by gradient descent,

earnmg !
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https://indico.cern.ch/event/708041/contributions/3269735/attachments/1811500/2958851/Systematic_Gradient_Descent.pdf

