
Track 3 Summary

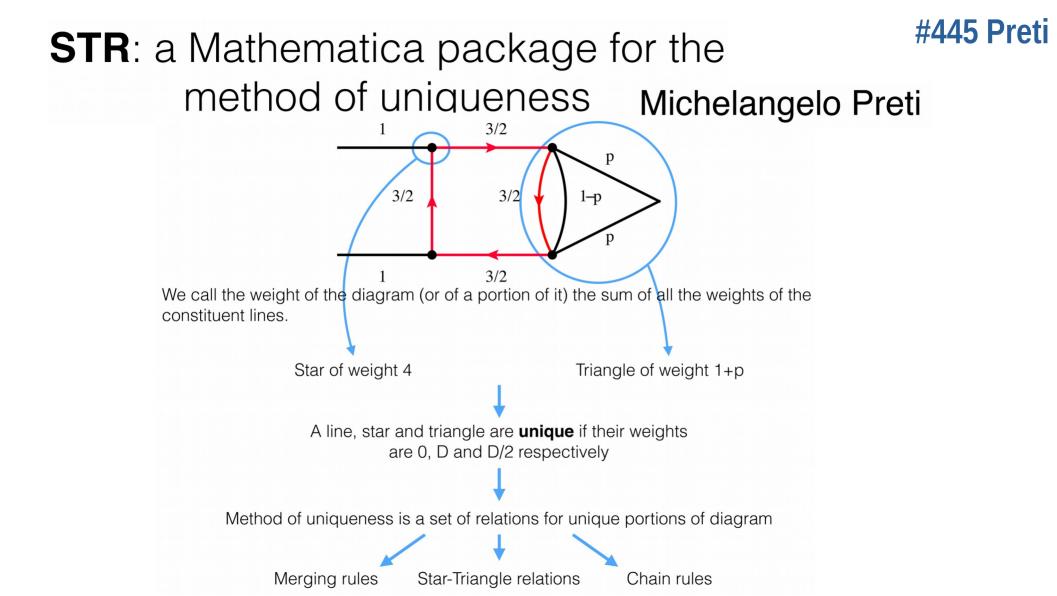
19th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2019)

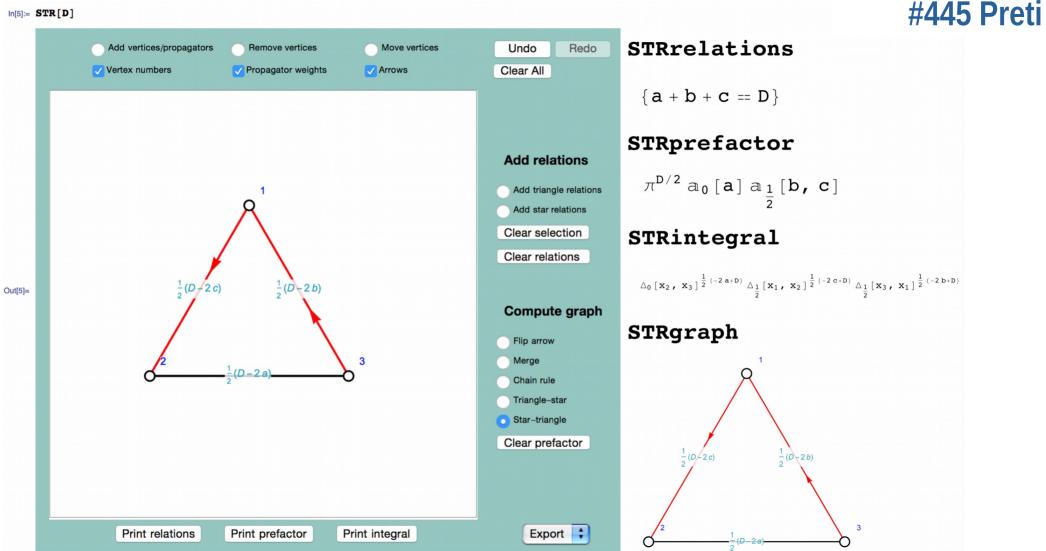
10-15 March 2019, Saas Fee, Switzerland

Track 3

Computations in Theoretical Physics: Techniques and Methods

This track focuses on computing techniques and algorithms used in the theoretical side of physics research


Rush summaries of 23 parallel talks in 10 minutes


Face of ACAT

Multi-loop Calculations

In[5]:= STR[D]

Numerical multi-loop integration on heterogeneous many-core processors

#292 de Doncker

E. de Doncker¹, A. Almulihi¹, F. Yuasa², N. Nakasato³, H. Daisaka⁴, T. Ishikawa²

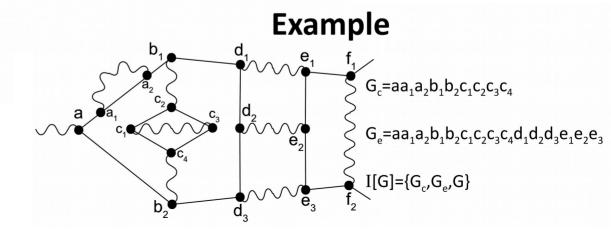
Suiren2 at KEK, liquid immersion cooling, many-core supercomputer

#292 de Doncker

(m = 2) 5¹³ pts. LR results for 3-loop massless self-energy diagram L₀ on Suiren2

DIAGRAM	N	#Ртѕ. <i>п</i>	TIMES [S] ON SUIREN2, NXTY: X NODES, Y TASKS			
			1 node	2 nodes	4 nodes	8 nodes
Fig [3ls] (<i>t</i>)	8	5 ¹³	n1t1: 432.7 n1t2: 217.8 n1t4: 111.7 n1t8: 58.33	n2t1: 217.7 n2t2: 111.4 n2t4: 57.58 n2t8: 30.68	n4t1: 112.0 n4t2: 56.58 n4t4: 29.70 n4t8: 16.70	n8t1: 56.23 n8t2: 29.01 n8t4: 15.91 n8t8: 9.857

Table: $(m = 2) 5^{13}$ pts. (7*D*) results for 3-loop massless self-ene rgy diagram L_0 on Suiren2; Abs. err. = 1.71e-07, Rel. err. = 8.22e-09; Loop blocks of size 128 * 32; Compare to GPU: 390.6 s 2496 CUDA Cores


Numerical calculation of high-order QED contributions to the electron anomalous magnetic moment #340 Volkov

Sergey Volkov SINP MSU, Dubna branch (Russia) DLNP JINR, Dubna (Russia)

AMM of the electron (theory and experiment)

The measured value [2011]: a_e=0.00115965218073(28)

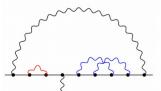
 $l_1^{(2n)}$ calculations are still important...

Diagram-specific probability density functions

#340 Volkov

- Integral: $\int_{z_1,...,z_M} f(z_1,...,z_M) \delta(z_1+...+z_M-1) dz$
- Hepp sectors: $z_{j_1} \ge z_{j_2} \ge ... \ge z_{j_M}$ • **Density:** $C \cdot \frac{\prod_{l=2}^{M} (z_{j_l} / z_{j_{l-1}})^{Deg(\{j_l, j_{l+1}, \dots, j_M\})}}{z_1 \cdot z_2 \cdot \dots \cdot z_M},$

Deg is defined on subsets of {1,...,M} •13-dimensional integrals


(the idea of E.Speer, J. Math. Phys. 9, 1404 (1968))

• My ideas are:

- 1) how to calculate *Deg*(s) for each set s (taking into account the infrared behavior etc.)
- 2) how to generate samples fastly

 $A_1^{(8)}$

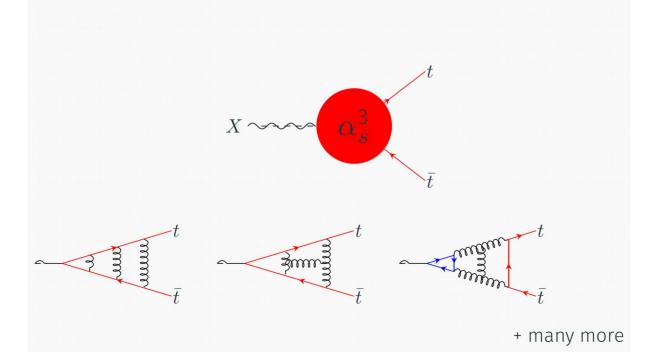
Example of a diagram from (1,2,1):

Class	Value	Laporta, 2017
(1,3,0)	-1.96956(93)	-1.97107
(2,2,0)	-0.1439(12)	-0.14248
(1,2,1)	-0.6224(10)	-0.62192
(3,1,0)	-1.04093(90)	-1.04054
(2,1,1)	1.08594(76)	1.08669
(4,0,0)	0.51185(34)	0.51246
	(1,3,0) (2,2,0) (1,2,1) (3,1,0) (2,1,1)	(1,3,0) -1.96956(93) (2,2,0) -0.1439(12) (1,2,1) -0.6224(10) (3,1,0) -1.04093(90) (2,1,1) 1.08594(76)

$A_1^{(10)}$: diagrams without electron loops

T. Aoyama, T. Kinoshita, M. Nio, 2019 (90% confidence): 7.668(159) My result (1σ): 6.782(113) 25797 GPU-hours, NVidia Tesla V100, supercomputer «Govorun», JINR Calc 1: 6.739(132) 19515 GPU-hours, CURAND MRG32k3a generator Calc 2: 6.905(220) 6282 GPU-hours, CURAND Philox 4x32 10 generator

•3213 Feynman diagrams


•807 classes of diagrams for comparison with the direct subtraction on the mass shell •9 gauge-invariant classes (k,m,n)

500 GB of the integrands code (compiled)

•1.9.10¹⁴ Monte Carlo samples

Class	Value	Calc 1	Calc 2	N_{diag}
(1,4,0)	6.172(42)	6.158(49)	6.209(80)	706
(2,3,0)	-0.724(54)	-0.746(63)	-0.66(10)	706
(1,3,1)	0.895(43)	0.854(50)	1.007(82)	148
(3,2,0)	-0.396(43)	-0.399(51)	-0.390(85)	558
(2,2,1)	-2.160(46)	-2.133(53)	-2.236(90)	370
(4,1,0)	-1.017(26)	-1.028(31)	-0.984(51)	336
(1,2,2)	0.301(25)	0.312(30)	0.267(50)	55
(3,1,1)	2.624(30)	2.628(35)	2.614(58)	261
(5,0,0)	1.0898(80)	1.0929(94)	1.081(15)	73

Image: The second se

#484 Rana

To solve such a system, it would be best to organize it in such a way that it diagonalizes, or at least it takes a block-triangular form.

A glimpse of the result

#484 Rana

$$\begin{split} F_{A,1}^{(3)} &= C_F n_1^2 T_F^2 \left[\frac{1}{\varepsilon^3} \left\{ \frac{16}{27} - \frac{32}{27} \xi H_0 \right\} + \frac{1}{\varepsilon^2} \left\{ \frac{208}{81} + \xi \left(-\frac{32}{9} H_{0,0} + \frac{64}{9} H_{-1,0} + \frac{32}{9} \zeta_2 \right) - \frac{16}{81} \left(47 + 18x + 47x^2 \right) H_{0,0} + \frac{32}{27} \left(47 + 18x + 47x^2 \right) H_{0,0} + \frac{32}{27} \left(47 + 18x + 47x^2 \right) H_{0,0} + \frac{32}{27} \left(47 + 18x + 47x^2 \right) H_{-1,0} + \frac{8}{27} \left(121 + 36x + 67x^2 \right) \zeta_2 \right) + \xi \left(-\frac{32}{3} H_{0,0,0} + \frac{64}{3} H_{0,-1,0} + \frac{64}{3} H_{-1,0,0} \right) \\ &- \frac{128}{3} H_{-1,-1,0} + \left(-\frac{16}{3} H_0 - \frac{64}{3} H_{-1} \right) \zeta_2 + \frac{64}{3} \zeta_3 \right) \right\} + \left\{ \frac{18224}{729} + \eta \left(-\frac{16}{720} \left(12475 - 3078x + 12475x^2 \right) H_0 - \frac{16}{9} \left(93 + 2x + 93x^2 \right) H_{0,0} + \frac{32}{9} \left(93 + 2x + 93x^2 \right) H_{-1,0} - \frac{16}{9} \left(47 + 18x + 47x^2 \right) H_{-1,0,0} - \frac{64}{9} \left(47 + 18x + 47x^2 \right) H_{0,0,0} + \frac{32}{9} \left(47 + 18x + 47x^2 \right) H_{-1,0,0} - \frac{64}{9} \left(47 + 18x + 47x^2 \right) H_{-1,0,0} - \frac{64}{9} \left(47 + 18x + 47x^2 \right) H_{-1,0,0} + \left(\frac{8}{9} \left(225 + 4x + 147x^2 \right) - \frac{8}{9} \left(47 + 18x + 47x^2 \right) H_{0,0,0} - \frac{64}{9} \left(47 + 18x + 47x^2 \right) H_0 - \frac{32}{9} \left(47 + 18x + 47x^2 \right) H_0 - \frac{32}{9} \left(47 + 18x + 47x^2 \right) H_0 - \frac{32}{9} \left(47 + 18x + 47x^2 \right) H_0 - \frac{32}{9} \left(47 + 18x + 47x^2 \right) H_0 - \frac{128H_{0,-1,-1,0} + \left(\frac{8}{9} \left(225 + 4x + 147x^2 \right) - \frac{8}{9} \left(47 + 18x + 47x^2 \right) H_0 - \frac{32}{9} \left(47 + 18x +$$

Algorithm to find an all-order in the running coupling solution to an equation of the DGLAP type

#454 Kondrashuk

Igor Kondrashuk

UBB, Chillan, Chile

Gustavo Álvarez⁽¹⁾, Igor Kondrashuk⁽²⁾ (1) Hamburg DESY (2) Departamento de Ciencias Basicas, Universidad del Bio-Bio (Chile)

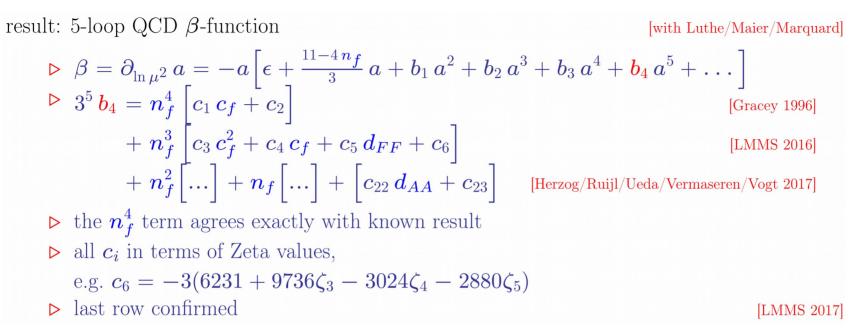
The DGLAP IDE may be written in such a form

$$\int_{a-i\infty}^{a+i\infty} dN x^{-N} \phi_1(N) u^{\frac{\alpha}{2\pi}\gamma(N,\alpha)} \left[\gamma(N,\alpha) - \int_x^1 \frac{dy}{y} y^N P_{GG}(y,\alpha) \right]$$
$$= \int_{a-i\infty}^{a+i\infty} dN x^{-N} \phi_1(N) u^{\frac{\alpha}{2\pi}\gamma(N,\alpha)} \int_0^x \frac{dy}{y} y^N P_{GG}(y,\alpha) = 0$$

Toward an efficient evaluation of two-loop massive scalar integrals #449 Guillet

#451 Schröder

Renormalization of gauge theories at five loops


York Schröder (UBB Chillán)

recent work with John Gracey, Ian Jack, Thomas Luthe, Andreas Maier, Peter Marquard

and earlier work with J. Möller, C. Studerus

#451 Schröder

[LMMS 2017]

completion of 5-loop renormalization program

- ▷ besides β and γ_m , have also $Z_{\psi\psi}$, Z_{cc} and Z_{ccg} (Fy gauge + ξ^1)
- \triangleright all other RCs follow from these five, due to gauge invariance
- ▶ full gauge dependence now also available

[Chetyrkin/Falcioni/Herzog/Vermaseren 2017]

Multi-leg Calculations

FUTURE e^+e^- COLLIDER PROJECTS

#360 Arbuzov

Linear Colliders

- ILC, CLIC
- ILC: technology is ready, to be built in Japan (?)

E_{tot}

- ILC: 91; 250 GeV 1 TeV
- CLIC: 500 GeV 3 TeV
- $\mathcal{L}\approx 2\cdot 10^{34}~cm^{-2}s^{-1}$

Stat. uncertainty $\sim 10^{-3}$

Beam polarization: e^{-} beam: P = 80 - 90% e^{+} beam: P = 30 - 60%

Circular Colliders

- FCC-ee, TLEP
- CEPC
- muon collider (?)

*E*_{tot} • 91; 160; 240; 350 GeV

 $\mathcal{L}\approx 2\cdot 10^{36}~cm^{-2}s^{-1}$ (4 exp.)

Stat. uncertainty $< 10^{-3}$

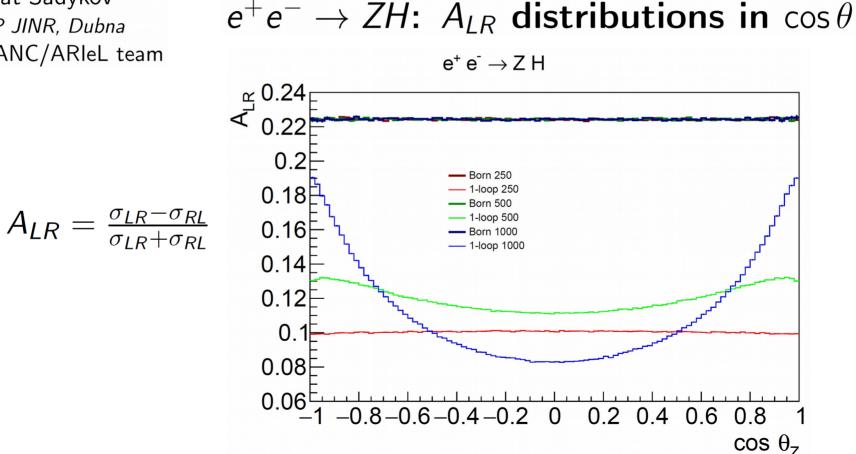
Beam polarization: desirable

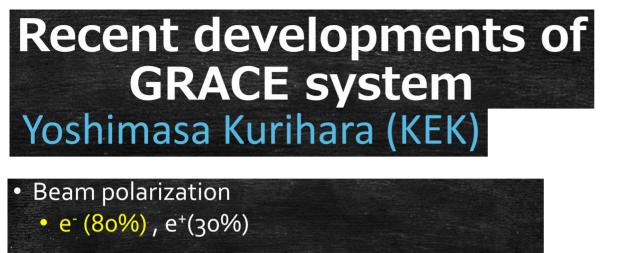
QED and electroweak radiative corrections to polarized Bhabha scattering

Andrej Arbuzov

BLTP, JINR, Dubna

(on behalf of the SANC group)

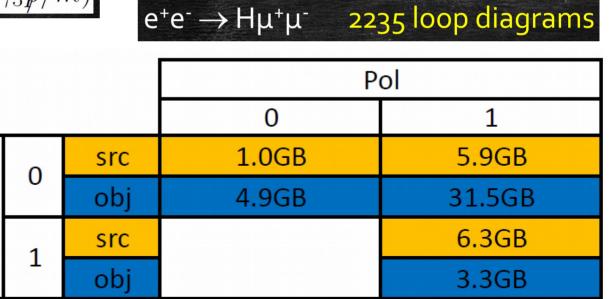

SANC FOR PROCESSES WITH POLARIZED BEAMS


#360 Arbuzov

- NLO EW corrections for polarized e^+e^- scattering:
 - Bhabha scattering (PRD 2018)
 - $e^+e^- \to ZH$ (arXiv:1812.10965)
 - $e^+e^- \rightarrow \mu^+\mu^-$ (or $\tau^+\tau^-$) (preliminary)
 - $e^+e^- \rightarrow Z\gamma$ (preliminary)
 - $e^+e^- \rightarrow \gamma\gamma$ (preliminary)
 - $e^+e^- \rightarrow t\bar{t}$ (in progress)
 - $e^+e^- \rightarrow ZZ$ (in progress)
 - $e^+e^- \rightarrow f\bar{f}\gamma$ (future plans)
 - $e^+e^- \rightarrow f\bar{f}H$ (future plans)
- NLO EW corrections for polarized $\gamma\gamma$ scattering:
 - $\gamma \gamma \rightarrow \gamma \gamma$ (future plans)
 - $\gamma \gamma \rightarrow Z \gamma$ (future plans)
 - $\gamma \gamma \rightarrow ZZ$ (future plans)

#361 Sadykov $MCSANC_{ee}$ – Event Generator for polarized $e^+e^$ scattering at one-loop EW

Renat Sadykov DLNP JINR. Dubna for the SANC/ARIeL team

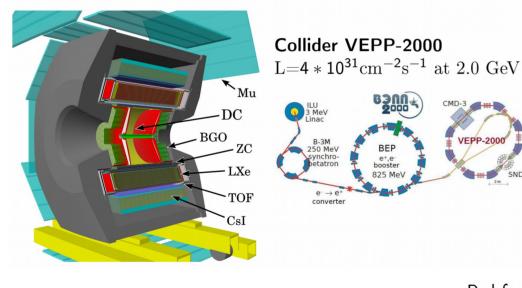


Opt

Projection operator: $P_{\lambda}=rac{1}{2}(1+\lambda\gamma_5 p\!\!\!/m)$

Code optimization

#461 Kurihara

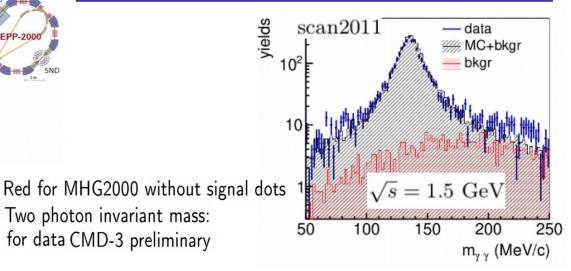


Data-driven low-energy generator for CMD-3

S. Eidelman, A. Korobov

Budker Institute of Nuclear Physics NSU

CMD-3

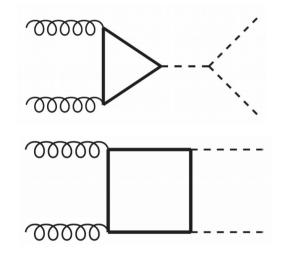

- MHG2000-MultiHadronic Generator for VEPP-2000
- pQCD fails at the energy range $\sqrt{s} < 2$ GeV

Two photon invariant mass:

for data CMD-3 preliminary

- One of CMD-3's goals is the precision measurement of exclusive hadron cross section
- Evaluation of the background for hadronic processes
- It is data-driven generator based on the bulk of measured exclusive cross sections

Application at CMD-3: $\pi^+\pi^-\pi^0\pi^0$



#486 Korobov

Double Higgs Production in the high- and low-energy limits

Joshua Davies, Go Mishima, Matthias Steinhauser, David Wellmann

Dominant channel at a hadron collider: gluon fusion.

 $\mathcal{M}^{\mu
u} \sim \mathcal{A}^{\mu
u}_1(\mathcal{F}_{tri} + \mathcal{F}_{box1}) + \mathcal{A}^{\mu
u}_2(\mathcal{F}_{box2})$

- LO • full result
- NLO
 - numerical result
 - large-m_t limit

[Glover,van der Bij '88][Plehn,Spira,Zerwas '98]

#359 Davies

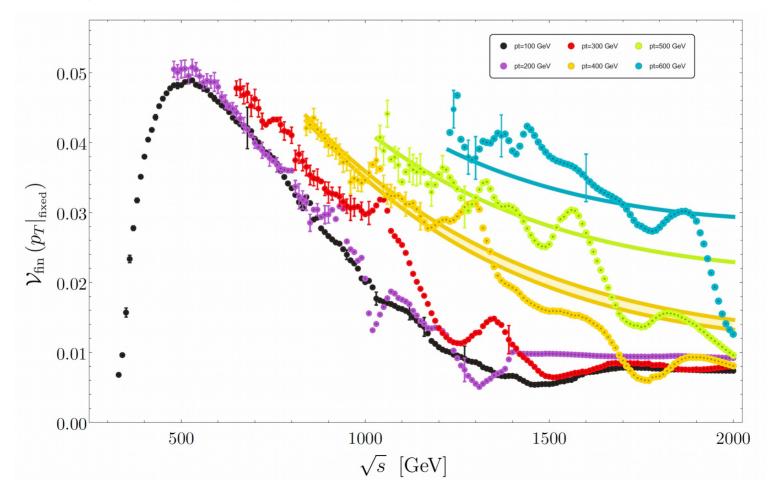
- [Borowka,Greiner,Heinrich,Jones,Kerner,Schlenk,Zicke '16] [Baglio,Campanario,Glaus,Mühlleitner,Spira,Streicher '18]
- [Dawson,Dittmaier,Spira '98] [Grigo,Hoff,Melnikov,Steinhauser '13]
 - [Degrassi,Giardine,Gröber '16]
- Padé approx. (large- m_t + threshold) [Gröber,Maier,Rauh '17]

NNLO

- large-m_t limit [de Florian,Mazzitelli '13] [Grigo,Melnikov,Steinhauser '14]
 - [Grigo,Hoff,Steinhauser '15]

- finite-m_t estimate
- [Grazzini,Heinrich,Jones,Kallweit,Kerner,Lindert,Mazzitelli '18]

This talk:


- NLO high-energy limit
- NNLO large-*m_t* limit

[Davies, Mishima, Steinhauser, Wellmann '18, '19]

#359 Davies

Results: V_{fin}

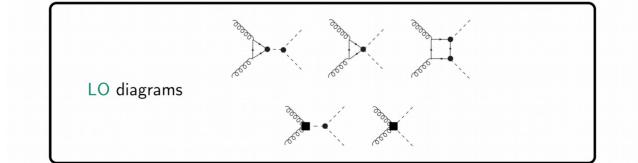
V_{fin}: IR finite (subtracted) virtual cross-section.

Probing the trilinear Higgs boson coupling in di-Higgs production at NLO QCD in Powheg

#356 Scyboz

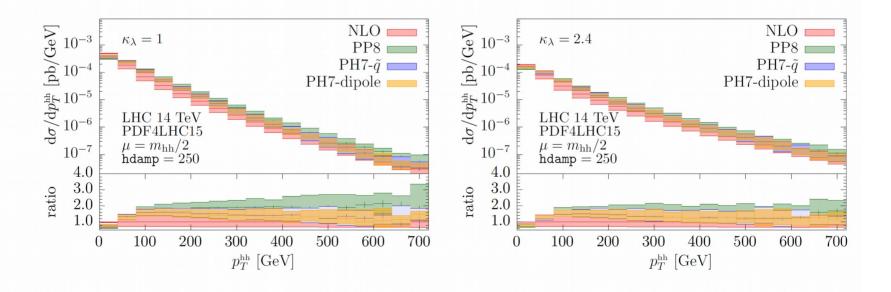
G. Heinrich¹, S. Jones², M. Kerner³, G. Luisoni¹, L. Scyboz¹

Varying the Higgs couplings


Full m_t -dependence:

• Full NLO QCD for *hh* within a non-linear EFT

[Buchalla, Capozi, Celis, Heinrich, LS '18]


• 5 anomalous couplings:

$$\begin{split} \mathscr{L} \supset -m_t \left(y_t rac{h}{v} + c_{tt} rac{h^2}{v^2}
ight) ar{t} t - \kappa_\lambda rac{m_h^2}{2v} h^3 \ + rac{lpha_s}{8\pi} \left(c_{ggh} rac{h}{v} + c_{gghh} rac{h^2}{v^2}
ight) \ G^a_{\mu
u} G^{a,\mu
u} \end{split}$$

Showered results

- Pythia8 generates much harder radiation in the high- p_T^{hh} tail
- Very similar results for both Herwig showers

 $\kappa_{\lambda} = 1.0$

 $\kappa_{\lambda} = 2.4$

#356 Scyboz

New Features in FeynArts & Friends,

and how they got used in FeynHiggs

Thomas Hahn Max-Planck-Institut für Physik München Many small functions/additions to FeynArts, FormCalc, & LoopTools, mostly triggered by FeynHiggs development. Together significant improvements, in particular in code generation:

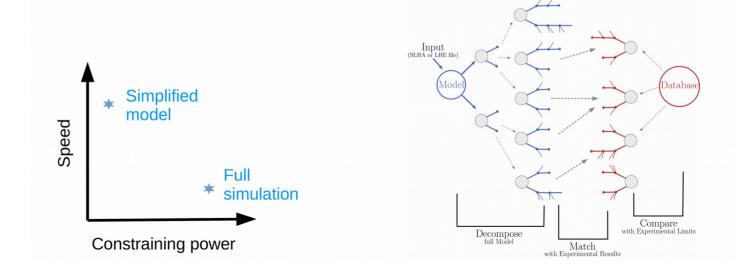
#347 Hahn

- Convenience of Code Generation: DeclIf, Enum, ClearEnum
- Variable/Abbreviation handling: ToVars, MakeTmp, Abbreviate
- Generic Amplitudes:

persistent names, propagator-type-dependent particle properties, mixing fields

• Mixing precision within the same code

Update on


Wolfgang Waltenberger HEPHY and Vienna University

for the SModelS group

Recap: the Idea behind SModelS

SModelS confronts theories beyond the Standard Model (BSM) with LHC search results by decomposing full models into their simplified models topologies, and comparing the cross section predictions of these individual topologies with a database of SMS results.

SModelS database

#	ID	pretty name	Topologies	Type	\mathcal{L} [fb ⁻¹]
1	ATLAS-SUSY-2015-01	$2 \text{ b-jets} + E_T$	1: T2bb	ul	3.2
2	ATLAS-SUSY-2015-02	single 1 stop	1: T2tt	ul	3.2
	ATLAS-SUSY-2015-02	single 1 stop	1: T2tt	eff	3.2
3	ATLAS-SUSY-2015-06	$0 l's + 2.6 jets + E_T$	2: T1, T2	eff	3.2
4	ATLAS-SUSY-2015-09	jets + 2 SS 1's or $>=3$ 1's	1: Titttt	ul	3.2
5	ATLAS-SUSY-2016-14	$2 \text{ SS or } 3 \text{ l's} + \text{jets} + E_T$	3: T1tt[off]tt, T1tttt[off]	ul	36.1
6	ATLAS-SUSY-2016-17	2 opposite sign l's + E_T	 T2bbWW[off], T2tt[off] 	ul	36.1
7	ATLAS-SUSY-2016-19	stops to staus	1: T4bnutaubnutau	ul	36.1
8	ATLAS-SUSY-2016-26	$>=2 c jets + E_T$	1: T2cc	ul	36.1
9	ATLAS-SUSY-2016-33	2 OSSF $\Gamma s + E_T$	2: T5ZZ, T6ZZ	ul	36.1
10	ATLAS-SUSY-2017-03	multi-l EWK searches	1: TChiWZ	ul	36.1
11	ATLAS-CONF-2012-105	$2 \text{ SS I's} + \ge 4 \text{ jets} + E_T$	1: Tltttt	ul	5.8
12	ATLAS-CONF-2012-166	$1 l + 4(1 b)$ jets + E_T	1: T2tt	ul	13.0
13	ATLAS-CONF-2013-001	$0 l's + 2 b$ -jets $+ E_T$	1: T6bbWW[off]	ul	12.8
14	ATLAS-CONF-2013-007	$2 \text{ SS I's} + 0-3 \text{ b-jets} + E_T$	4: T1btbt, T1tttt	ul	20.7
15	ATLAS-CONF-2013-024	$0.1 + 6 (2 b)$ jets + E_T	1: T2tt	ul	20.5
	ATLAS-CONF-2013-024	$0.1 + 6 (2.b)$ jets + E_T	21: T1bbbb, T1bbbt	eff	20.5
16	ATLAS-CONF-2013-025	$>= 5 (>=1 b)jets + 2, 3 SFOS l's + E_T$	1: T6ZZtt	ul	20.7
17	ATLAS-CONF-2013-035	3 l's (e,mu) + #T	2: TChiChipmSlepL	ul	20.7
18	ATLAS-CONF-2013-037	$1 1 + >= 4(1 b)$ jets + $\not\!\!E_T$	1: T2tt	ul	20.7
	ATLAS-CONF-2013-037	$1 l + >= 4(1 b)jets + E_T$	18: T1bbbb, T1bbbt	eff	20.7
19	ATLAS-CONF-2013-047	$0 l's + 2.6 jets + E_T$	3: T1, T5WW[off]	ul	20.3
	ATLAS-CONF-2013-047	$0 l's + 2-6 jets + E_T$	24: T1, T1bbbb, T1bbbt	eff	20.3
20	ATLAS-CONF-2013-048	$2 l's + (b_r)jets + E_T$	 T2bbWW, T6bbWW[off] 	ul	20.3
	ATLAS-CONF-2013-048	$2 l's + (b)jets + \not\!\!E_T$	11: T1bbtt, T1btbt	eff	20.3
21	ATLAS-CONF-2013-049	2 l's (e,mu) + E_T	1: TSlepSlep	ul	20.3
22	ATLAS-CONF-2013-053	$0 l's + 2 b$ -jets $+ \not E_T$	1: T2bb	ul	20.1
	ATLAS-CONF-2013-053	$0 l's + 2 b$ -jets $+ \not E_T$	17: T1bbbb, T1bbbt	eff	20.1
23	ATLAS-CONF-2013-054	$0 l's + >= 7-10 jets + \not\!\!E_T$	24: T1, T1bbbb, T1bbbt	eff	20.3
24	ATLAS-CONF-2013-061	$jets + >= 3 b-jets + \not E_T$	3: T1bbbb, T1btbt	ul	20.1
	ATLAS-CONF-2013-061	$jets + \ge 3 b - jets + \not E_T$	21: T1bbbb, T1bbbt	eff	20.1
25	ATLAS-CONF-2013-062	$1 l + jets + \not\!\!E_T$	21: T1, T1bbbb, T1bbbt	eff	20.3
26	ATLAS-CONF-2013-065	$2 l's + (b_{-})jets + \not E_T$	2: T2tt, T6bbWW	ul	20.3
27	ATLAS-CONF-2013-089	2 l's (e,mu) + $\!$	1: T6WW	ul	20.3
28	ATLAS-CONF-2013-093	$1 l + 2 b$ -jets + E_T	1: TChiWH	ul	20.3
	ATLAS-CONF-2013-093	$1 l + 2 b$ -jets + E_T	 T1bbbt, T2bt, T2tt 	eff	20.3
29	ATLAS-SUSY-2013-02	$0 l's + 2.6 jets + E_T$	 T1, T2, T5WW[off] 	ul	20.3
	ATLAS-SUSY-2013-02	jets and met	4: T1, T2, T3GQ, T5	eff	20.3
30	ATLAS-SUSY-2013-04	$0 l's + >= 7-10 jets + \not\!\!{E}_T$	1: Titttt	ul	20.3
	ATLAS-SUSY-2013-04	$0 l's + >= 7-10 jets + \not\!\!{E}_T$	8: T1bbbb, T1btbt	eff	20.3
31	ATLAS-SUSY-2013-05	$0 l's + 2 b$ -jets $+ \not\!\!E_T$	 T2bb, T6bbWW[off] 	ul	20.1
	ATLAS-SUSY-2013-05	$0 l's + 2 b$ -jets $+ \not\!\!E_T$	1: T2bb	eff	20.1
32	ATLAS-SUSY-2013-08	$Z + b$ -jets $+ \not E_T$	1: T6ZZtt	ul	20.3
33	ATLAS-SUSY-2013-09	$2 \text{ SS l's} + E_T$	1: Titttt	ul	20.3
34	ATLAS-SUSY-2013-11	$2 l's (e, mu) + \not\!\!E_T$	4: TChiWW, TChiWZ	ul	20.3
	ATLAS-SUSY-2013-11	2 l's (e,mu) + $\not\!\!E_T$	 TChiWW[off], TChipChimSlepSnu 	eff	20.3
35	ATLAS-SUSY-2013-12	$3 l's (e,mu,tau) + \not\!\!E_T$	4: TChiChipmSlepL	ul	20.3
36	ATLAS-SUSY-2013-15	$1 l + 4 (1 b)jets + E_T$	1: T2tt	ul	20.3
	ATLAS-SUSY-2013-15	$1 l + 4 (1 b)jets + E_T$	1: T2tt	eff	20.3
37	ATLAS-SUSY-2013-16	$0.1 + 6.(2.b)$ jets + E_T	1: T2tt	ul	20.1
0.0	ATLAS-SUSY-2013-16	$0.1 + 6.(2 b)jets + E_T$	1: T2tt	eff	20.1
38	ATLAS-SUSY-2013-18	$0-1$ l's + >= 3 b-jets + E_T	2: T1bbbb, T1tttt	ul	20.1
00	ATLAS-SUSY-2013-18	$0-1$ l's + >= 3 b-jets + E_T	2: T1bbbb, T1tttt	eff	20.1
39	ATLAS-SUSY-2013-19	2 OS I's + (b-)jets + \not{E}_T	2: T2bbWW, T2tt	ul	20.3
40	ATLAS-SUSY-2013-21	monojet or c-jet $+ E_T$	 T2bb, T2bbWW[off] 	eff	20.3
41	ATLAS-SUSY-2013-23	$1 1 + 2$ b-jets (or $2 \gamma s$) + E_T	1: TChiWH	ul	20.3
42	ATLAS-SUSY-2014-03	$>= 2(c_*)$ jets + $\not\!\!E_T$	1: TScharm	eff	20.3

We collect the results of the experimental collaborations, and augment them with recast analyses (MadAnalysis5, CheckMATE), creating our own efficiency maps. In addition, fastlim kindly allowed us to also use their efficiency maps. SModelS v1.2.2 ships with results of almost 100 different analyses.

#	ID	pretty name	Topologies	Type	\mathcal{L} [fb ⁻¹]	
1	CMS-PAS-EXO-16-036	hscp search	3: THSCPM1b, TRHadGM1	ul	12.9	13
	CMS-PAS-EXO-16-036	hscp search	8: THSCPM1b, THSCPM2b	eff	12.9	13
2	CMS-PAS-SUS-15-002	$>=$ 4jets + E_T , HT, HTmiss	2: T1, T1bbbb	ul	2.2	13
3	CMS-PAS-SUS-16-014	jets + E_T , HT	6: T1, T1bbbb, T1tttt[off]	ul	12.9	13
4	CMS-PAS-SUS-16-015	jets + E_T , MT2	6: T1, T1bbbb, T1tttt off	ul	12.9	13
5	CMS-PAS-SUS-16-016	$>= 1 \text{ jet} + E_T, \alpha_T$	4: T1bbbb, T1tttt[off]	ul	12.9	13
6	CMS-PAS-SUS-16-019	jets + 11	1: Tittttoff	ul	12.9	13
7	CMS-PAS-SUS-16-022	$>= 3 l's + E_T$	1: Titttioff	ul	12.9	13
8	CMS-PAS-SUS-16-052	soft $1, \leq = 2$ jets	2: T2bbWW[off], T6bbWW[off]	ul	35.9	13
9	CMS-PAS-SUS-16-052-agg	soft $1, \leq = 2$ jets	2: T2bbWW off], T6bbWW off]	eff	35.9	13
10	CMS-PAS-SUS-17-004	multi-l EWK searches	2: TChiWH, TChiWZ[off]	ul	35.9	13
11	CMS-SUS-15-002	multijets + E_T , HT	3: T1, T1bbbb, T1tttt[off]	ul	2.2	13
12	CMS-SUS-15-008	SS dil	1: Tittttoff	ul	2.3	13
13	CMS-SUS-16-032	Sbottom and compressed stop	2: T2bb, T2cc	ul	35.9	13
14	CMS-SUS-16-033	$0L + jets + \not\!\!E_T$	6: T1, T1bbbb, T1tttt[off]	ul	35.9	13
15	CMS-SUS-16-034	2 OSSF I's	2: T5ZZ, TChiWZ	ul	35.9	13
16	CMS-SUS-16-035	2 SS1's	7: T1tttt[off], T5WW[off]	ul	35.9	13
17	CMS-SUS-16-036	$0L + jets + E_T$	8: T1, T1bbbb, T1tttt[off]	ul	35.9	13
18	CMS-SUS-16-037	$1L + jets + k_T$ with MJ	3: Titttt[off], T5tt[off]tt	ul	35.9	13
19	CMS-SUS-16-039	multi-l EWK searches	5: TChiChipmSlepL	ul	35.9	13
19 20	CMS-SUS-16-041	multi-le + jets + E_T	6: T1tttt[off], T6HHtt	ul	35.9	13
20	CMS-SUS-16-041 CMS-SUS-16-042	$1L + jets + E_T$	2: T1tttt[off], T5WW[off]	ul	35.9	13
21 22		EWK WH	1: TChiWH		35.9	13
22	CMS-SUS-16-043	Shottom to bHbH and $H \rightarrow \gamma\gamma$		ul	35.9	13
23 24	CMS-SUS-16-045		2: T6bbHH, TChiWH 2: T5gg, T6gg			13
	CMS-SUS-16-046	$\gamma + \mu_T$		ul	35.9	13
25	CMS-SUS-16-047	$\gamma + HT$	2: T5gg, T6gg	ul	35.9	
26	CMS-SUS-16-049	All hadronic stop	4: T2cc, T2ttC, T2tt[off]	ul	35.9	13
27	CMS-SUS-16-050	0L + top tag	4: T1tttt[off], T2tt[off]	ul	35.9	13
28	CMS-SUS-16-051	1L stop	2: T2tt[off], T6bbWW	ul	35.9	13
29	CMS-SUS-17-001	Stop search in dil + jets + $\not\!\!E_T$	2: T2tt[off], T6bbWW	ul	35.9	13
30	CMS-EXO-12-026	hscp search	3: THSCPM1b, TRHadGM1	ul	18.8	8
31	CMS-EXO-13-006	hscp search	8: THSCPM1b, THSCPM2b	eff	18.8	8
32	CMS-PAS-SUS-12-022	multi-l + E_T	6: TChiChipmSlepL	ul	9.2	8
33	CMS-PAS-SUS-12-026	$>= 3$ l's (+jets) + $\not\!E_T$	1: Titttt	ul	9.2	8
34	CMS-PAS-SUS-13-015	$>= 5(1b)$ jets + $\not\!\!E_T$	1: T2tt[off]	eff	19.4	8
35	CMS-PAS-SUS-13-016	$2 \text{ OS I's} + \ge 4 (2 \text{ b-})\text{jets} + E_T$	1: T1tttt[off]	ul	19.7	8
	CMS-PAS-SUS-13-016	2 OS I's + >= 4 (2b-)jets + $\not\!\!E_T$	1: T1tttt[off]	eff	19.7	8
36	CMS-PAS-SUS-13-018	1-2 b-jets + $\not\!\!E_T$, M_CT	1: T2bb	ul	19.4	8
37	CMS-PAS-SUS-13-023	hadronic stop	 T2tt[off], T6bbWW[off] 	ul	18.9	8
38	CMS-PAS-SUS-14-011	razor with b-jets	3: T1bbbb, T1tttt[off]	ul	19.3	8
39	CMS-SUS-12-024	$0 l's + >= 3 (1b)jets + E_T$	1: Titttt[off]	ul	19.4	8
	CMS-SUS-12-024	$0 l's + >= 3 (1b_{-})jets + E_T$	2: T1bbbb, T1tttt[off]	eff	19.4	8
40	CMS-SUS-12-028	$jets + E_T, \alpha_T$	5: T1, T1bbbb, T1tttt	ul	11.7	8
41	CMS-SUS-13-002	$>= 3$ l's (+jets) + $\not\!\!E_T$	1: Titttt	ul	19.5	8
42	CMS-SUS-13-004	$>= 1$ b-jet + E_T , Razor	3: T1bbbb, T1tttt[off]	ul	19.3	8
43	CMS-SUS-13-006	EW prod, to I's, W, Z, and H	5: TChiChipmSlepL	ul	19.5	8
44	CMS-SUS-13-007	$1 1 + >= 2 \text{ b-jets} + \not \!$	2: T1tttt[off], T5tttt	ul	19.3	8
	CMS-SUS-13-007	$1 1 + >= 2 b_{jets} + \not\!$	1: Titttt[off]	eff	19.3	8
45	CMS-SUS-13-011	$1 1 + >= 4 (1b)$ jets + $\not\!\!E_T$	 T2tt[off], T6bbWW[off] 	ul	19.5	8
	CMS-SUS-13-011	$1 1 + >= 4 (1b)jets + \not\!\!E_T$	1: T2tt[off]	eff	19.5	8
46	CMS-SUS-13-012	n _{jets} + HTmiss	3: T1, T1tttt[off]	ul	19.5	8
	CMS-SUS-13-012	n _{jets} + HTmiss	19: T1, T1bbbb, T1btbt	eff	19.5	8
47	CMS-SUS-13-013	$2 \text{ SS I's} + (b_{-})\text{jets} + \not \!$	2: T1tttt[off], T6ttWW[off]	ul	19.5	8
	CMS-SUS-13-013	$2 \text{ SS I's} + (b)\text{jets} + \not{\!\! E}_T$	1: T1tttt[off]	eff	19.5	8
48	CMS-SUS-13-019	$>= 2 \text{ jets} + E_T, MT2$	6: T1, T1bbbb, T1tttt[off]	ul	19.5	8
49	CMS-SUS-14-010	b-jets + 4 Ws	1: Tittttoff	ul	19.5	8
	CMS-SUS-14-021	soft I's, low n _{iets} , high ET	1: T2bbWW [off]	ul	19.7	8

https://smodels.github.io/docs/ListOfAnalyses

HepMC3 Event Record Library for Monte Carlo Event Generators http://hepmc.web.cern.ch/hepmc/

#462 Verbytskyi

Andrii Verbytskyi¹, Andy Buckley², David Grellscheid³, Dmitri Konstantinov⁴, Leif Lönnblad⁵, James Monk^{5,6}, Witold Pokorski⁴ and Tomasz Przedziński⁷

HepMC3 I/O is easily extendable for different purposes

- See **30 LOCs** to write events for ZEUS detector simulation.
- Writing events into dot format is given in git repository. To be used with GraphViz:

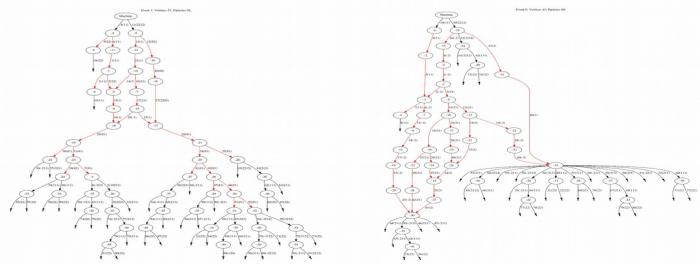


Figure: e^-p collision in Herwig 7.1.4

Figure: e^-p collision in Pythia 8.2.40

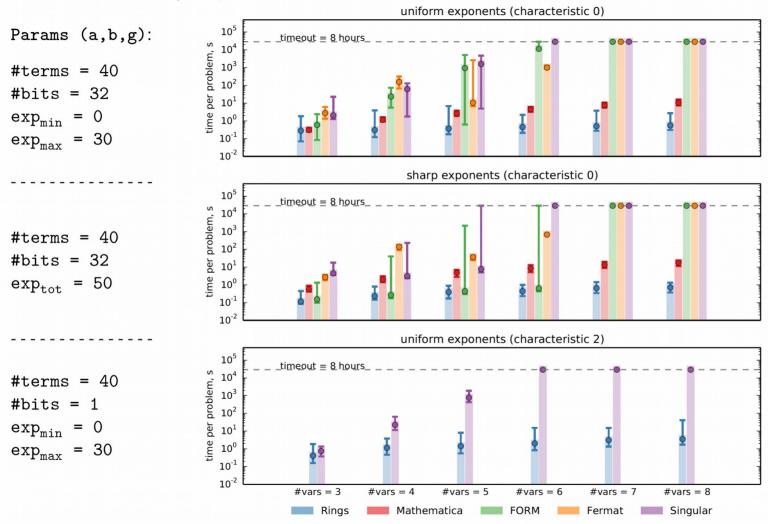
Current usage

#462 Verbytskyi

Code	Туре	Implementation
SHERPA-MC	MCEG	3.1/3.0 in SHERPA-MC master/2.2.5
JetScape	MCEG	3.0 in JetScape 1.0
ThePEG	MCEG Toolkit	3.1 in ThePEG master
Herwig7	MCEG	3.1 via ThePEG
Pythia8	MCEG	3.1/3.0 in HepMC3
Pythia6	MCEG	3.1 in HepMC3 examples
Tauola	MCEG	3.1/3.0 in HepMC3
Photos	MCEG	3.1/3.0 in HepMC3
WHIZARD	MCEG	3.0?
EvtGen	MCEG	in touch with authors
GeantV	Simulation	3.0
pyhepmc-ng/scikit-hep	Utility	3.1/3.0 in scikit-hep master
MC-ANALYSER	Analysis/Ploting	
Rivet	Analysis/Ploting	work in progress

Note: HepMC3 3.1.0 and HepMC2 can co-exist in one installation \rightarrow painless migration from HePMC2. +We will help you to find out how to implement HepMC3 support \rightarrow hepmc-dev@cern.ch.

Computer Algebra


Rings: efficient Java/Scala library for polynomial rings Stanislav Poslavsky

Institute for High Energy Physics NRC "Kurchatov Institute", Protvino, Russia

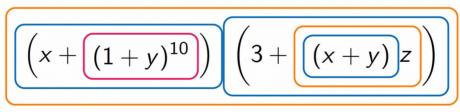
#284 Poslavsky

Benchmarks: polynomial GCD

▷ reFORM (see Ben's talk) seems has comparable performance

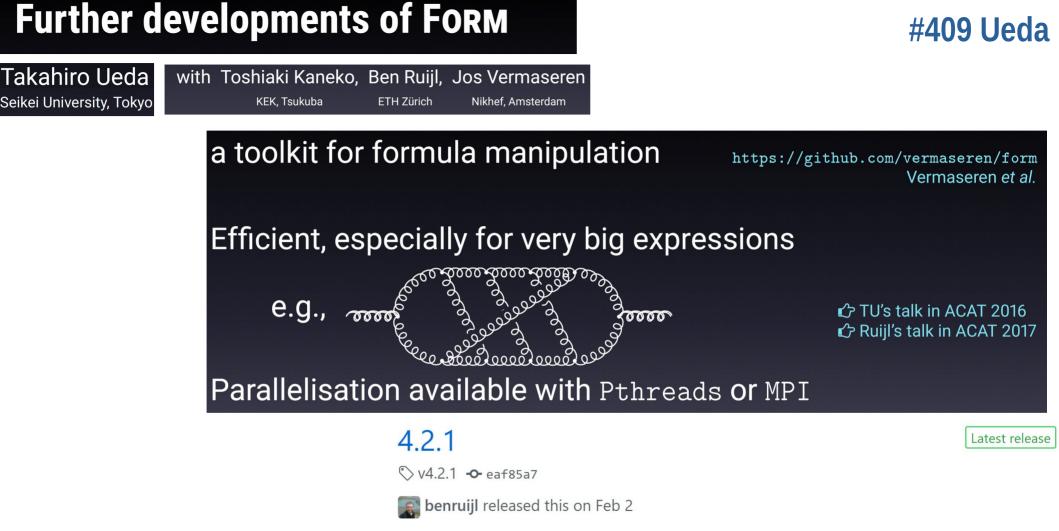
#284 Poslavsky

reFORM: designing a new symbolic manipulation toolkit


#324 Ruijl

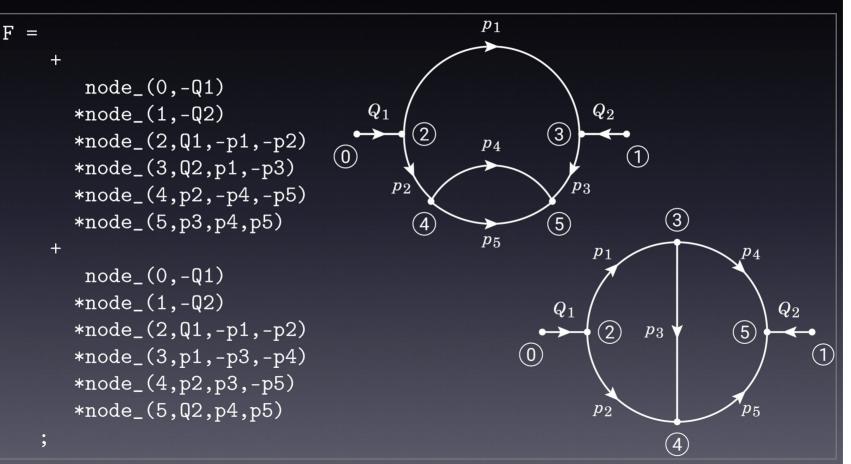
Ben Ruijl

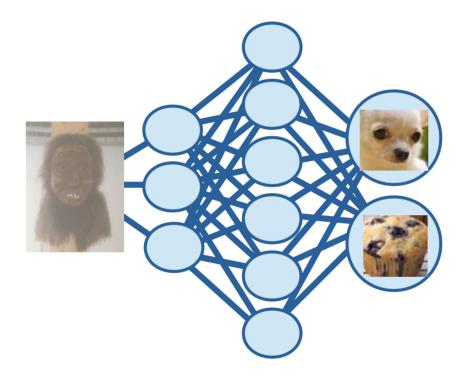
Internals


ETH Zurich

- Almost every operation is an iterator, since the result may not fit in memory
- Expansion operation:

- Product of factors: Cartesian product iterator
- Subexpressions: sequence iterator
- Powers of positive integer: binomial iterator

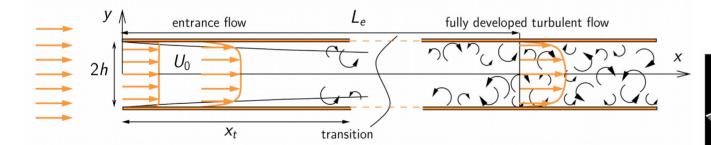

```
Python API for polynomials
                                                            #324 Ruijl
   1 import reform
   2
   3 vi = reform.VarInfo()
   4
   5 a = reform.Polynomial("1+x*y+5", vi)
   6 b = reform.Polynomial("x<sup>2</sup>+2*x*y+y", vi)
   _{7} g = a + b
   8
   9 ag = a * g
  10 \text{ bg} = \text{b} * \text{g}
  11 print(gcd(ag, bg))
  12
  13 rat = reform.RationalPolynomial(ag, bg)
  14 print(rat)
```



This release is a minor update from 4.2.0 and mostly contains bug fixes. For an overview of the changes, see the full release notes.

#409 Ueda

Technical preview: topologies_ function



Simulations and Machine Learning

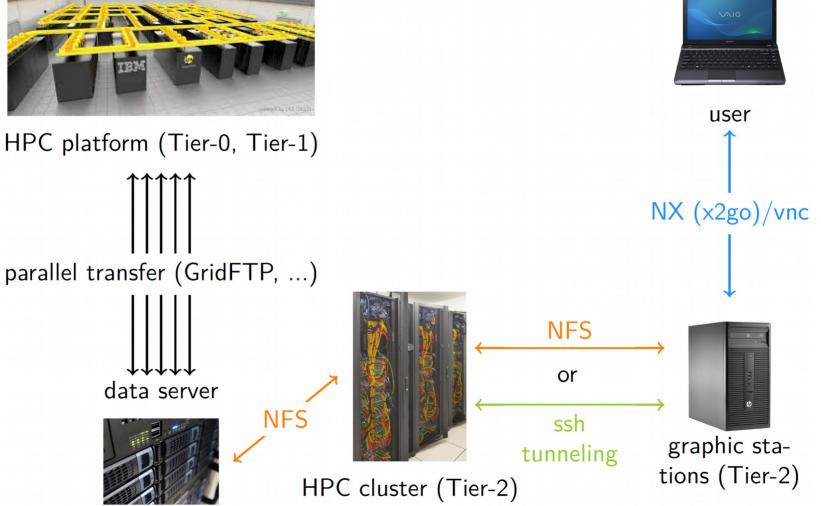
In-situ analysis and visualization of massively parallel computations of transitional and turbulent flows

<u>Anne Cadiou</u>, Marc Buffat, Christophe Pera^{*} Bastien Di Pierro, Frédéric Alizard, Lionel Le Penven

"High-Performance Computing is the **use of super computers** and **parallel processing** techniques for solving complex computational problems." *(from Techopedia)*

Constraints

- Numerical experiments require spectral accuracy
- Efficiency (follow flow development during long time)



#307 Cadiou

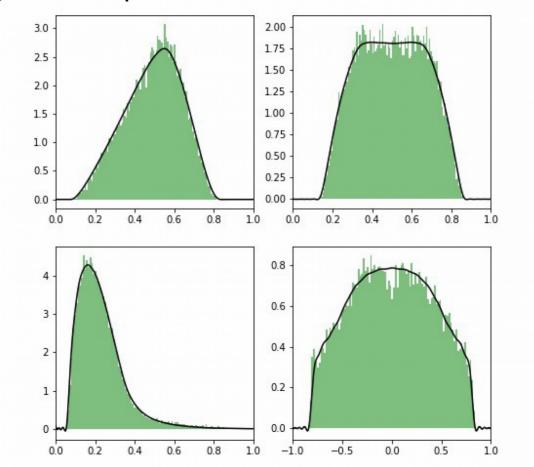
Client/server workflow

#307 Cadiou

N-Tuples and compact matrix element representations Daniel Maître, IPPP Durham

#439 Maître

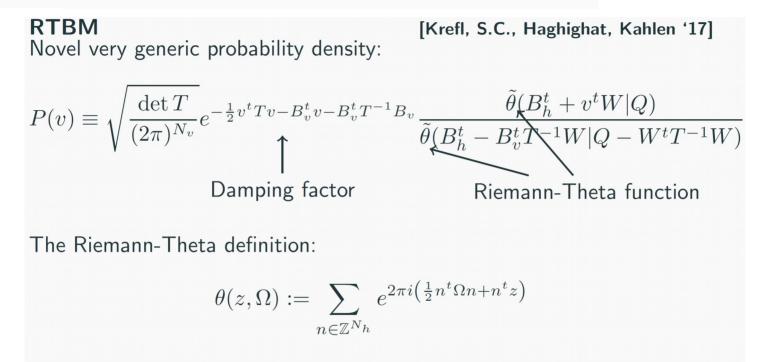
• A nTuple file is a weighted sample to represent the integral


$$\sigma = \int d\phi_n \frac{d\sigma}{d\phi} C(\phi)$$

- Where *C* is a set of cuts designed to be as inclusive as possible
- ϕ is the phasespace, and also include the integration over the PDFs for hadronic initial states
- For hadronic initial states we need to create new nTuples
 - For new collider energies
 - For different jet pt cuts

Unweighted events

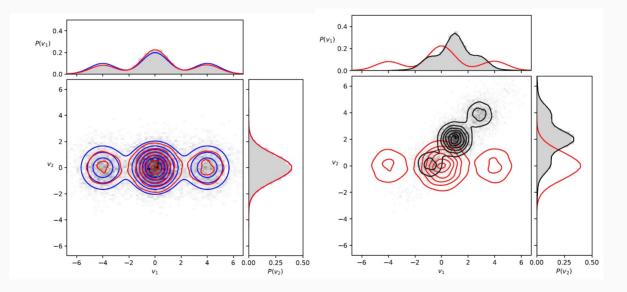
#439 Maître


• Using the Gibbs sampling method we generate an unweighted sample:

Riemann-Theta Boltzmann machine

#312 Carrazza

Stefano Carrazza Universit degli Studi di Milano (UNIMI and INFN Milan)

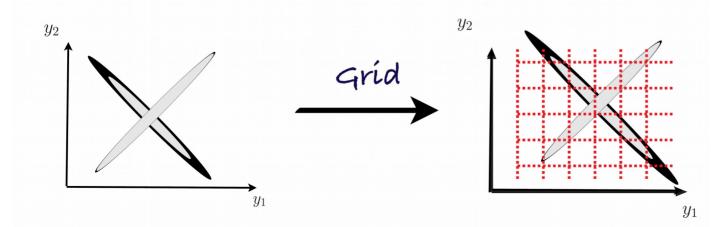


Key properties: Periodicity, modular invariance, solution to heat equation, etc.

Note: Gradients can be calculated analytically as well so gradient descent can be used for optimization.

RTBM P(v) sampling with affine transformation: [S.C. and Krefl '18]

#312 Carrazza

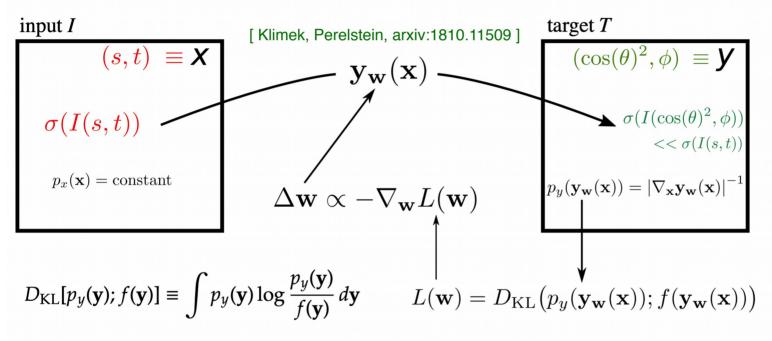

For a rotation of $\theta = \pi/4$ and scaling of 2 ($N_v = 2, N_h = 2$).

MACHINE LEARNING FOR MONTE-CARLO INTEGRATION

VALENTIN HIRSCHI

VEGAS

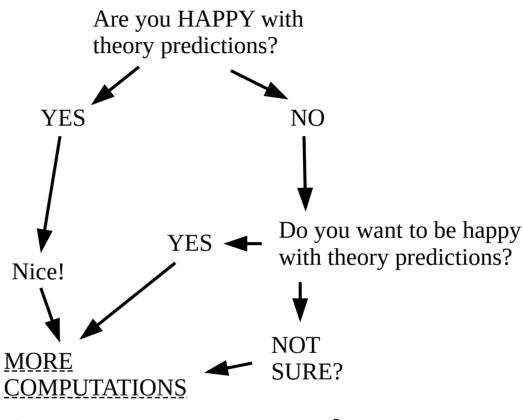
•The choice of the parameterisation has a strong impact on the efficiency



#463 Hirschi

NN INTEGRATION REPLACING VEGAS

#463 Hirschi


If integrand faster than NN inference then all is not lost:

Consider **a generative NN model** effectively learning a change of variables. Contrary to **VEGAS**, it is not a piece-wise ansatz: no factorised approx. **Saturation** of the **variance reduction** much delayed. If perfectly trained, then V=0 and a single evaluation yields the exact integral.

See more computations in the next ACAT

T3 Conveners: Claude Duhr, Takahiro Ueda, Ben Ruijl Apologies for the biased summary by Teen-agers++(++)