Automatic Differentiation and Deep Learning
with examples from PyTorch

Soumith Chintala
automatic differentiation
Automatic Differentiation

Given $y = f(x_1, x_2)$, the ability to compute $\frac{dy}{dx_1}, \frac{dy}{dx_2}$
Automatic Differentiation

Given $y = f(x_1, x_2)$, the ability to compute dy/dx_1, dy/dx_2

- using the chain rule in the process
Automatic Differentiation

Given \(y = f(x_1, x_2) \), the ability to compute \(\frac{dy}{dx_1}, \frac{dy}{dx_2} \)

- using the chain rule in the process
- Two flavors:
 - forward-mode
 - reverse-mode
Forward-mode autodiff

\[y = f(x_1, x_2) = \ln(x_1) + x_1 x_2 - \sin(x_2) \text{ at } (x_1, x_2) = (2, 5) \]

<table>
<thead>
<tr>
<th>Forward Primal Trace</th>
<th>Forward Tangent (Derivative) Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v_{-1} = x_1)</td>
<td>(\dot{v}_{-1} = \dot{x}_1)</td>
</tr>
<tr>
<td>(v_0 = x_2)</td>
<td>(\dot{v}_0 = \dot{x}_2)</td>
</tr>
<tr>
<td>(v_1 = \ln v_{-1})</td>
<td>(\dot{v}1 = \dot{v}{-1} / v_{-1})</td>
</tr>
<tr>
<td>(v_2 = v_{-1} \times v_0)</td>
<td>(\dot{v}2 = \dot{v}{-1} \times v_0 + \dot{v}0 \times v{-1})</td>
</tr>
<tr>
<td>(v_3 = \sin v_0)</td>
<td>(\dot{v}_3 = \dot{v}_0 \times \cos v_0)</td>
</tr>
<tr>
<td>(v_4 = v_1 + v_2)</td>
<td>(\dot{v}_4 = \dot{v}_1 + \dot{v}_2)</td>
</tr>
<tr>
<td>(v_5 = v_4 - v_3)</td>
<td>(\dot{v}_5 = \dot{v}_4 - \dot{v}_3)</td>
</tr>
<tr>
<td>(y = v_5)</td>
<td>(\dot{y} = \dot{v}_5)</td>
</tr>
</tbody>
</table>

\[y = 11.652 \]

\[\dot{y} = 5.5 \]

Example from: Baydin, Pearlmutter et. al. Automatic differentiation in machine learning: a survey
Forward-mode autodiff

- Computes Jacobian-vector products
Forward-mode autodiff

- Computes Jacobian-vector products
- Each evaluation gives one row of the Jacobian
Forward-mode autodiff

- Computes Jacobian-vector products
- Each evaluation gives one row of the Jacobian
- Typically used when: dimensionality of y >> dimensionality of x
Forward-mode autodiff

• Computes Jacobian-vector products
• Each evaluation gives one row of the Jacobian
• Typically used when: dimensionality of $y \gg$ dimensionality of x

• Popular software implementations:
 • HIPS/autograd
 • JAX by Google
 • Flux.jl
Reverse-mode autodiff

\[
y = f(x_1, x_2) = \ln(x_1) + x_1 x_2 - \sin(x_2) \text{ at } (x_1, x_2) = (2, 5)
\]

\[
\begin{align*}
\text{Forward Primal Trace} & \\
v_{-1} &= x_1 &= 2 \\
v_0 &= x_2 &= 5 \\
v_1 &= \ln v_{-1} &= \ln 2 \\
v_2 &= v_{-1} \times v_0 &= 2 \times 5 \\
v_3 &= \sin v_0 &= \sin 5 \\
v_4 &= v_1 + v_2 &= 0.693 + 10 \\
v_5 &= v_4 - v_3 &= 10.693 + 0.959 \\
y &= v_5 &= 11.652
\end{align*}
\]

\[
\begin{align*}
\text{Reverse Adjoint (Derivative) Trace} & \\
\bar{x}_1 &= \bar{v}_{-1} &= 5.5 \\
\bar{x}_2 &= \bar{v}_0 &= 1.716 \\
\bar{v}_{-1} &= \bar{v}_{-1} + \bar{v}_1 \frac{\partial v_{-1}}{\partial v_{-1}} = \bar{v}_{-1} + \bar{v}_1 / v_{-1} &= 5.5 \\
\bar{v}_0 &= \bar{v}_0 + \bar{v}_2 \frac{\partial v_2}{\partial v_0} = \bar{v}_0 + \bar{v}_2 \times v_{-1} &= 1.716 \\
\bar{v}_{-1} &= \bar{v}_2 \frac{\partial v_2}{\partial v_{-1}} = \bar{v}_2 \times v_0 &= 5 \\
\bar{v}_0 &= \bar{v}_3 \frac{\partial v_3}{\partial v_0} = \bar{v}_3 \times \cos v_0 &= -0.284 \\
\bar{v}_2 &= \bar{v}_4 \frac{\partial v_4}{\partial v_2} = \bar{v}_4 \times 1 &= 1 \\
\bar{v}_1 &= \bar{v}_5 \frac{\partial v_5}{\partial v_1} = \bar{v}_5 \times 1 &= 1 \\
\bar{v}_3 &= \bar{v}_5 \frac{\partial v_5}{\partial v_3} = \bar{v}_5 \times (-1) &= -1 \\
\bar{v}_4 &= \bar{v}_5 \frac{\partial v_5}{\partial v_4} = \bar{v}_5 \times 1 &= 1 \\
\bar{v}_5 &= \bar{y} &= 1
\end{align*}
\]

Example from: Baydin, Pearlmutter et. al. Automatic differentiation in machine learning: a survey
Reverse-mode autodiff

- Computes Vector-Jacobian products
Reverse-mode autodiff

- Computes Vector-Jacobian products
- Each evaluation gives one column of the Jacobian
Reverse-mode autodiff

• Computes Vector-Jacobian products
• Each evaluation gives one column of the Jacobian
• Typically used when: dimensionality of $x >>$ dimensionality of y
 • Like in deep learning
Reverse-mode autodiff

- Computes Vector-Jacobian products
- Each evaluation gives one column of the Jacobian
- Typically used when: dimensionality of $x \gg$ dimensionality of y
 - Like in deep learning

- Popular software implementations
 - All deep learning frameworks (PyTorch, TensorFlow, MXNet, Caffe, etc.)
 - HIPS/autograd
 - Jax by Google
 - Flux.jl
PyTorch Autograd

```python
W_h = torch.randn(20, 20, requires_grad=True)
W_x = torch.randn(20, 10, requires_grad=True)
x = torch.randn(1, 10)
prev_h = torch.randn(1, 20)
```
PyTorch Autograd

```python
W_h = torch.randn(20, 20, requires_grad=True)
W_x = torch.randn(20, 10, requires_grad=True)
x = torch.randn(1, 10)
prev_h = torch.randn(1, 20)

i2h = torch.mm(W_x, x.t())
h2h = torch.mm(W_h, prev_h.t())
```
PyTorch Autograd

$W_h = \text{torch.randn}(20, 20, \text{requires_grad=\text{True}})$
$W_x = \text{torch.randn}(20, 10, \text{requires_grad=\text{True}})$
$x = \text{torch.randn}(1, 10)$
$prev_h = \text{torch.randn}(1, 20)$

$i2h = \text{torch.mm}(W_x, x.t())$
$h2h = \text{torch.mm}(W_h, prev_h.t())$
$next_h = i2h + h2h$
PyTorch Autograd

\[
W_h = \text{torch.randn}(20, 20, \text{requires_grad=True}) \\
W_x = \text{torch.randn}(20, 10, \text{requires_grad=True}) \\
x = \text{torch.randn}(1, 10) \\
prev_h = \text{torch.randn}(1, 20)
\]

\[
i2h = \text{torch.mm}(W_x, x.t()) \\
h2h = \text{torch.mm}(W_h, prev_h.t()) \\
next_h = i2h + h2h
\]
PyTorch Autograd

\[
W_h = \text{torch.randn}(20, 20, \text{requires_grad=True})
\]
\[
W_x = \text{torch.randn}(20, 10, \text{requires_grad=True})
\]
\[
x = \text{torch.randn}(1, 10)
\]
\[
\text{prev}_h = \text{torch.randn}(1, 20)
\]
\[
i2h = \text{torch.mm}(W_x, x.t())
\]
\[
h2h = \text{torch.mm}(W_h, \text{prev}_h.t())
\]
\[
\text{next}_h = i2h + h2h
\]
\[
\text{next}_h = \text{next}_h.tanh()
\]
\[W_h = \text{torch.randn}(20, 20, \text{requires_grad=True}) \]
\[W_x = \text{torch.randn}(20, 10, \text{requires_grad=True}) \]
\[x = \text{torch.randn}(1, 10) \]
\[\text{prev}_h = \text{torch.randn}(1, 20) \]

\[i2h = \text{torch.mm}(W_x, x^\top) \]
\[h2h = \text{torch.mm}(W_h, \text{prev}_h^\top) \]
\[\text{next}_h = i2h + h2h \]
\[\text{next}_h = \text{next}_h \tanh() \]
\[\text{next}_h . \text{backward}(\text{torch.ones}(1, 20)) \]
```python
W_h = torch.randn(20, 20, requires_grad=True)
W_x = torch.randn(20, 10, requires_grad=True)
x = torch.randn(1, 10)
prev_h = torch.randn(1, 20)

i2h = torch.mm(W_x, x.t())
h2h = torch.mm(W_h, prev_h.t())
next_h = i2h + h2h
next_h = next_h.tanh()
next_h.backward(torch.ones(1, 20), create_graph=True, retain_graph=True)

torch.autograd.grad([next_h], [W_h.grad])```

PyTorch Autograd
PyTorch Autograd

\[
\begin{align*}
W_h &= \text{torch.randn}(20, 20, \text{requires\_grad=True}) \\
W_x &= \text{torch.randn}(20, 10, \text{requires\_grad=True}) \\
x &= \text{torch.randn}(1, 10) \\
prev_h &= \text{torch.randn}(1, 20)
\end{align*}
\]

\[
\begin{align*}
i2h &= \text{torch.mm}(W_x, x.t()) \\
h2h &= \text{torch.mm}(W_h, prev_h.t()) \\
next_h &= i2h + h2h \\
next_h &= next_h.tanh()
\end{align*}
\]

\[
\text{next}_h\text{.backward(torch.ones(1, 20), create\_graph=True, retain\_graph=True)}
\]

\[
\text{torch.autograd.grad([next}_h, [W_h\text{.grad}])}
\]

The ability to take n-th order derivatives
Deep Learning
Problem Statement

- Deep Learning Workloads
Problem Statement

• Deep Learning Workloads

```python
for epoch in range(max_epochs):
 for data, target in enumerate(training_data):
 output = model(data)
 loss = F.nll_loss(output, target)
 loss.backward()
 optimizer.step()
```
Problem Statement

- Deep Learning Workloads

N samples, each of some shape D

```python
for epoch in range(max_epochs):
 for data, target in enumerate(training_data):
 output = model(data)
 loss = F.nll_loss(output, target)
 loss.backward()
 optimizer.step()
```
Problem Statement

• Deep Learning Workloads

```python
for epoch in range(max_epochs):
 for data, target in enumerate(training_data):
 output = model(data)
 loss = F.nll_loss(output, target)
 loss.backward()
 optimizer.step()
```

mini-batch of M samples (M << N), each of shape D
Problem Statement

- Deep Learning Workloads

```python
for epoch in range(max_epochs):
 for data, target in enumerate(training_data):
 output = model(data)
 loss = F.nll_loss(output, target)
 loss.backward()
 optimizer.step()
```

neural network with weights
Problem Statement

• Deep Learning Workloads

backpropagation: compute derivatives wrt loss, using chain rule

```python
for epoch in range(max_epochs):
 for data, target in enumerate(training_data):
 output = model(data)
 loss = F.nll_loss(output, target)
 loss.backward()
 optimizer.step()
```
Problem Statement

- Deep Learning Workloads

update weights using the computed gradients

```python
for epoch in range(max_epochs):
 for data, target in enumerate(training_data):
 output = model(data)
 loss = F.nll_loss(output, target)
 loss.backward()
 optimizer.step()
```
Problem Statement

• Deep Learning Workloads

```python
for epoch in range(max_epochs):
 for data, target in enumerate(training_data):
 output = model(data)
 loss = F.nll_loss(output, target)
 loss.backward()
 optimizer.step()
```
Problem Statement

- Deep Learning Workloads

```python
for epoch in range(max_epochs):
 for data, target in enumerate(training_data):
 output = model(data)
 loss = F.nll_loss(output, target)
 loss.backward()
 optimizer.step()
```
Types of typical operators

Convolution

Figure by Vincent Dumolin: https://github.com/vdumoulin/conv_arithmetic
Types of typical operators

Convolution

Figure by Vincent Dumolin: https://github.com/vdumoulin/conv_arithmetic
Types of typical operators

Convolution

for oc in output_channel:
    for ic in input_channel:
        for h in output_height:
            for w in output_width:
                for kh in kernel_height:
                    for kw in kernel_width:
                        output_pixel += input_pixel * kernel_value

Figure by Vincent Dumolin: https://github.com/vdumoulin/conv_arithmetic
Types of typical operators

Figure by Vincent Dumolin: https://github.com/vdumoulin/conv_arithmetic
Types of typical operators

Matrix Multiply

Figure by Wikipedia: https://en.wikipedia.org/wiki/Matrix_multiplication
Types of typical operators

Pointwise operations

```
for (i=0; i < data_length; i++) {
 output[i] = input1[i] + input2[i]
}
```
Types of typical operators

Reduction operations

double sum = 0.0;
for (i=0; i < data_length; i++) {
    sum += input[i];
}

Figure by Wikipedia: https://en.wikipedia.org/wiki/Matrix_multiplication
Chained Together

Input → Conv2d → BatchNorm → ReLU → Output

Figure by Wikipedia: https://en.wikipedia.org/wiki/Matrix_multiplication
Chained Together

Figure by Wikipedia: https://en.wikipedia.org/wiki/Matrix_multiplication
Chained Together

“deep”
Chained Together

"deep"

recurrent

Input -> [Chain of operations] -> Output

Figure by Wikipedia: https://en.wikipedia.org/wiki/Matrix_multiplication
Trained with Gradient Descent

“deep” recurrent

Input

Output

Figure by Wikipedia: https://en.wikipedia.org/wiki/Matrix_multiplication
Problem Statement

• Deep Learning Workloads

An easy way to see recurrence

```python
for epoch in range(max_epochs):
 for data, target in enumerate(training_data):
 output = model(data)
 loss = F.nll_loss(output, target)
 loss.backward()
 optimizer.step()
```
Problem Statement

• Deep Learning Workloads

an easy way to see recurrence

```python
for epoch in range(max_epochs):
 for data, target in enumerate(training_data):
 output, hidden = [], zeros()
 for t in data.size(0):
 out, hidden = model(data[t], hidden)
 output.append(out)
 loss = F.nll_loss(output, target)
 loss.backward()
 optimizer.step()
```
Problem Statement

Deep Learning Workloads

- Vision models
  - model is very deep, straight-line chain with no recurrence
  - lots of convolutions
  - typically run on GPUs
Problem Statement

- Deep Learning Workloads
  - Vision models
    - model is very deep, straight-line chain with no recurrence
    - lots of convolutions
    - typically run on GPUs
  - NLP models
    - LSTM-RNN
      - model is 1 to 4 "layers" deep
      - two matmuls across space and time along with pointwise ops
      - typically run on CPUs if small, GPUs if large
Deep Learning Frameworks

• Make this easy to program

```python
for epoch in range(max_epochs):
 for data, target in enumerate(training_data):
 output = model(data)
 loss = F.nll_loss(output, target)
 loss.backward()
 optimizer.step()
```
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.conv2_drop = nn.Dropout2d()
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)

    def forward(self, x):
        x = F.relu(F.max_pool2d(self.conv1(x), 2))
        x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
        x = x.view(-1, 320)
        x = F.relu(self.fc1(x))
        x = F.dropout(x, training=self.training)
        x = self.fc2(x)
        return F.log_softmax(x)

model = Net()
input = Variable(torch.randn(10, 20))
output = model(input)
Neural Networks

```python
class Net(nn.Module):
 def __init__(self):
 super(Net, self).__init__()
 self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
 self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
 self.conv2_drop = nn.Dropout2d()
 self.fc1 = nn.Linear(320, 50)
 self.fc2 = nn.Linear(50, 10)

 def forward(self, x):
 x = F.relu(F.max_pool2d(self.conv1(x), 2))
 x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
 x = x.view(-1, 320)
 x = F.relu(self.fc1(x))
 x = F.dropout(x, training=self.training)
 x = self.fc2(x)
 return F.log_softmax(x)

model = Net()
input = Variable(torch.randn(10, 20))
output = model(input)
```
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.conv2_drop = nn.Dropout2d()
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)

    def forward(self, x):
        x = F.relu(F.max_pool2d(self.conv1(x), 2))
        x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
        x = x.view(-1, 320)
        x = F.relu(self.fc1(x))
        x = F.dropout(x, training=self.training)
        x = self.fc2(x)
        return F.log_softmax(x)

model = Net()
input = Variable(torch.randn(10, 20))
output = model(input)
Optimization package

SGD, Adagrad, RMSProp, LBFGS, etc.

```python
net = Net()
optimizer = torch.optim.SGD(net.parameters(), lr=0.01, momentum=0.9)

for input, target in dataset:
 optimizer.zero_grad()
 output = model(input)
 loss = F.cross_entropy(output, target)
 loss.backward()
 optimizer.step()
```
Deep Learning & Python

- Most deep learning frameworks in Python
- Global interpreter-lock
- Application logic is order of magnitude slower than C++
Deep Learning & Python

- Most deep learning frameworks in Python
- Global interpreter-lock
- Application logic is order of magnitude slower than C++
- Most frameworks implemented in C++, with bindings to Python
Deep Learning & Hardware

• Typically support CPU & GPU
Deep Learning & Hardware

- Typically support CPU & GPU
- More recently: TPU, xPU etc.
Deep Learning & Compilers

- Most modern frameworks support compilation
Deep Learning & Compilers

• Most modern frameworks support compilation
• Runtime-retargeting / code generation
Compilation benefits

Kernel fusion

Out-of-order execution

Automatic work placement
Deep Learning & Distributed

• Most modern frameworks support distributed training
Deep Learning & Distributed

• Most modern frameworks support distributed training
• Parallelize over batches (data-parallel) and models (model-parallel)
Deep Learning & Distributed

• Most modern frameworks support distributed training
• Parallelize over batches (data-parallel) and models (model-parallel)
• PyTorch’s distributed built on top of an MPI-like stack
torch.nn.DistributedDataParallel

JUST WRAP YOUR MODEL

torch.distributed.init_process_group(world_size=4, init_method='...')
model = torch.nn.DistributedDataParallel(model)

for epoch in range(max_epochs):
    for data, target in enumerate(training_data):
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
DISTRIBUTED DATA PARALLEL

Performance-driven design
- Overlapping BWs with all-reductions
- Coalescing small tensors into buckets
  - A bucket is a big coalesced tensor

An iteration: Forward (FW) -> Backward (BW) -> AllReduce (R)

NO OVERLAPPING

OVERLAPPING BACKWARD WITH REDUCE

TENSOR COALESCING / BUCKETING
Intra-Machine

B0 + B1 + B2 + B3

Inter-Machine

B4 + B5 + B6 + B7

Intra-Machine

B0-7

B0-7

B0-7

B0-7
311 minutes – 32 minutes, by going from 1 to 16 NVIDIA DGX-1 nodes (8 to 128 NVIDIA V100 GPUs)
19% performance gain (1.53M – 1.82M Words Per Second on 16 nodes), thanks to c10d DDP overlapping
The aesthetics of imperative PyTorch for high performance, pure C++ research environments
MISSION

The aesthetics of PyTorch in pure C++

MOTIVATION

Enable research in environments that are . . .
MISSION

The aesthetics of PyTorch in pure C++

VALUES

Enable research in environments that are . . .

LOW LATENCY  BARE METAL
MULTITHREADED  ALREADY C++
#include <torch/torch.h>

struct Net : torch::nn::Module {
    Net() : fc1(8, 64), fc2(64, 1) {
        register_module("fc1", fc1);
        register_module("fc2", fc2);
    }

    torch::Tensor forward(torch::Tensor x) {
        x = torch::relu(fc1->forward(x));
        x = torch::dropout(x, /*p=*/0.5);
        x = torch::sigmoid(fc2->forward(x));
        return x;
    }
}

torch::nn::Linear fc1, fc2;

import torch

class Net(torch.nn.Module):
    def __init__(self):
        self.fc1 = torch.nn.Linear(8, 64)
        self.fc2 = torch.nn.Linear(64, 1)

    def forward(self, x):
        x = torch.relu(self.fc1.forward(x))
        x = torch.dropout(x, p=0.5)
        x = torch.sigmoid(self.fc2.forward(x))
        return x
Net net;

auto data_loader = torch::data::data_loader(  
torch::data::datasets::MNIST("./data"));

torch::optim::SGD optimizer(net->parameters());

for (size_t epoch = 1; epoch <= 10; ++epoch) {
    for (auto batch : data_loader) {
        optimizer.zero_grad();
        auto prediction = net->forward(batch.data);
        auto loss = torch::nll_loss(prediction,  
                                    batch.label);
        loss.backward();
        optimizer.step();
    }
    if (epoch % 2 == 0)  
        torch::save(net, "net.pt");
}
Thank You