Higher-order QED contributions to the lepton anomalous magnetic moments

Makiko Nio (RIKEN)

This talk is based on collaboration w/
T. Aoyama (KEK)
M. Hayakawa (Nagoya U)
T. Kinoshita (Cornell U and UMass Amherst)

Advanced Computing and Analysis Techniques in Physics Research
March 11 – June 15, 2019
Saas-Fee, Switzerland
Intrinsic magnetic property of a single lepton particle is characterized by a dimensionless number, called g-factor.

$$H = -\vec{\mu} \cdot \vec{B}, \quad \vec{\mu} = g \frac{e}{2m}\hat{s}$$

Anomaly, $a \equiv (g - 2)/2$, is a consequence of quantum nature of elementary particles. R. Kusch and H. M. Foley 1948, J. Schwinger 1948

Electron $g - 2$ is measured by using a Penning trap:
- University of Washington: H. Dehmelt et al. (1987)

Positron $g - 2$ measurement is in preparation.

Muon $g - 2$ is measured by using a muon storage ring:
- On-going experiments: J-PARC(2009–), Fermilab(2011–)

Both are the state-of-the-art measurements in study of elementary particles
Electron $g - 2$ measurement

![Diagram of cylindrical Penning trap cavity](image)

FIG. 4. Cylindrical Penning trap cavity used to confine a single electron and inhibit spontaneous emission.

Harvard 2008 measurement

\[a_e \equiv (g_e - 2)/2 = (1\,159\,652\,180.73 \pm 0.28) \times 10^{-12} \quad [0.24\text{ppb}] \]

Theory needs QED up to 5 loop + hadronic $\mathcal{O}(10^{-12})$ + weak $\mathcal{O}(10^{-14})$:

\[\left(\frac{\alpha}{\pi}\right)^5 \sim 0.068 \times 10^{-12}, \quad \alpha \equiv e^2/(4\pi\epsilon_0\hbar c) = 1/137.03 \cdots, \]

where α is the fine-structure constant.
Muon $g - 2$ at BNL

BNL final result 2006

G. W. Bennett et al. (Muon g-2), PRD73(2006)072003

$$a_\mu \equiv (g_\mu - 2)/2 = (116\,592\,089 \pm 63) \times 10^{-11} \quad [0.5\text{ppm}]$$

Theory needs QED up to 5 loop + hadronic $\mathcal{O}(10^{-7}) +$ weak $\mathcal{O}(10^{-9})$:

$$(\alpha/\pi)^5 \pi^2 \ln^3 (m_\mu/m_e) \sim 10 \times 10^{-11} \quad \sim 1500$$

because of enhancement due to the electron loop, $m_e \ll m_\mu$.
New Muon $g-2$ experiments

Precision will be reduced from 0.5 ppm to 0.1 ppm.
Theory of lepton $g - 2$

The Standard Model contribution to the lepton $g - 2$:

$$a_l = a_l(QED) + a_l(\text{weak}) + a_l(\text{hadron})$$

- γ, e, μ, τ
- W^\pm, Z^0

The QED contribution depends on lepton-mass ratios. For the electron $g - 2$, the dimensionless a_l is divided into

$$a_e(QED) = A_1 + A_2(m_e/m_\mu) + A_2(m_e/m_\tau) + A_3(m_e/m_\mu, m_e/m_\tau).$$

A_1 is the same for any lepton, mass-independent and universal.

Perturbation expansion of QED:

$$A_i = \left(\frac{\alpha}{\pi}\right)^2 A_i^{(2)} + \left(\frac{\alpha}{\pi}\right)^4 A_i^{(4)} + \left(\frac{\alpha}{\pi}\right)^6 A_i^{(6)} + \left(\frac{\alpha}{\pi}\right)^8 A_i^{(8)} + \left(\frac{\alpha}{\pi}\right)^{10} A_i^{(10)} + \cdots$$

By 2017, all terms up to the 8th order are well known.
One electron scattering by an external photon C, P, T, and Lorentz invariance guarantee the form of scattering amplitude:

\[\bar{e}u(p + q/2) \left[\gamma^\mu F_1(q^2) + \frac{i}{2m} \sigma^{\mu\nu} q_\nu F_2(q^2) \right] u(p - q/2) A_\mu(q) \]

\[F_2(q^2 = 0) \equiv a_e, \quad F_1(q^2 = 0) \equiv 1 \]

The muon and tau-lepton contribute to \(a_e \) very little:

\[a_e(\text{QED:mass-dependent}) = 2.747 \, 5719 (13) \times 10^{-12} \]

from 4th, 6th, 8th and 10th-order diagrams involving fermion loops.
QED mass-independent term A_1

Focus on the mass-independent A_1:

<table>
<thead>
<tr>
<th>n loops</th>
<th># of F diagrams</th>
<th>w/ fermion loops</th>
<th>w/o fermion loops</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>72</td>
<td>22</td>
<td>50</td>
</tr>
<tr>
<td>4</td>
<td>891</td>
<td>373</td>
<td>518</td>
</tr>
<tr>
<td>5</td>
<td>12,672</td>
<td>6,318</td>
<td>6,354</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n loops</th>
<th>$A_1^{(2n)}$</th>
<th>who & when</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$A_1^{(2)} = 0.5$</td>
<td>Schwinger 1948</td>
</tr>
<tr>
<td>2</td>
<td>$A_1^{(4)} = -0.328 \ 478 \ 965 \cdots$</td>
<td>Petermann 1957, Sommerfield 1958</td>
</tr>
<tr>
<td>3</td>
<td>$A_1^{(6)} = 1.181 \ 241 \ 456 \cdots$</td>
<td>Laporta and Remiddi 1996</td>
</tr>
<tr>
<td>4</td>
<td>$A_1^{(8)} = -1.912 \ 245 \ 764 \cdots$</td>
<td>Laporta 2017</td>
</tr>
<tr>
<td>5</td>
<td>$A_1^{(10)} = 6.737 \ (159)$</td>
<td>Aoyama et al. (AHKN) 2018</td>
</tr>
</tbody>
</table>
QED 8th-order $A_1^{(8)}$

891 Feynman vertex diagrams: S. Laporta, PLB772(2017)232, talk on Day 2

![Diagram](image)

History of $A_1^{(8)}$:

<table>
<thead>
<tr>
<th>Year</th>
<th>Who</th>
<th>$A_1^{(8)}$</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017</td>
<td>Laporta</td>
<td>$-1.912245764 \cdots$</td>
<td>near analytic, 1100 digits</td>
</tr>
<tr>
<td>2015</td>
<td>AHKN</td>
<td>$-1.91298 \ (84)$</td>
<td>latest numerical</td>
</tr>
<tr>
<td>2008</td>
<td>AHKN</td>
<td>$-1.9144 \ (35)$</td>
<td>two integrals revised</td>
</tr>
<tr>
<td>2005</td>
<td>KN</td>
<td>$-1.7283 \ (35)$</td>
<td>light-by-light revised</td>
</tr>
<tr>
<td>1990</td>
<td>Kinoshita</td>
<td>$-1.43 \ (14)$</td>
<td>improved</td>
</tr>
<tr>
<td>1981</td>
<td>K & Lindquist</td>
<td>$-0.8 \ (2.5)$</td>
<td>1st result</td>
</tr>
</tbody>
</table>
More on 8th-order terms

- More on the mass-independent term $A_1^{(8)}$:
 1) Alternative semi-analytic result: $A_1^{(8)} = -1.87 (12)$
 Consistent with Laporta's -1.912 and AHKN's -1.913.
 2) Alternative numerical work on the contribution from 518 diagrams w/o fermion loops:
 Laporta $-2.176\,866\,02 \cdots$ S. Laporta, PLB772(2017)232
 AHKN $-2.177\,33\,(82)$ AKHN, PRD91(2015)033006
 Volkov $-2.1790\,(22)$ S. Volkov, PRD98(2018)076018, talk on Day 2

- Mass-dependent terms $A_2^{(8)}$ and $A_3^{(8)}$:
 1) Numerical calculation:
 Change the loop fermion mass from m_e to $m_\mu(m_\tau)$. Easy.
 2) Analytic calculation:
 An additional small expansion parameter $m_e/m_\mu(m_\tau) \ll 1$.
 Don’t worry about the 8th order any more. It’s **CORRECT**.
12,672 Feynman vertex diagrams divided into 32 subsets:

- 6,354 vertex diagrams w/o a fermion loop, Set V.
 - difficult

- 6,318 diagrams w/ closed fermion loops, Set I-IV, IV.
 - easier
10th-order Set V

The hardest diagrams to evaluate belong to Set V.

Ward-Takahashi concatenation:

\[\frac{6354}{9} = 706 \rightarrow 389, \text{ because of time-reversal symmetry.} \]
Numerical approach to QED Feynman diagrams

Uniqueness of Kinoshita’s approach to QED $g - 2$:

P. Cvitanovic and T. Kinoshita (1974)

- Ward-Takahashi sum of vertex diagrams
- Feynman parameter space
 - Momentum space, 20 dim. v.s. Feynman parameter space, 13 dim.

$\Lambda^{\nu}(p, q) \ldots$ sum of 9 vertex diagrams
$\Sigma(p) \ldots \ldots \ldots$ a self-energy diagram
$q \ldots \ldots \ldots$ momentum of an external photon
$p \pm q/2 \ldots$ momenta of external on-shell electrons

$\Lambda^{\nu}(p, q) \approx q_\mu \left[\frac{\partial \Lambda^{\mu}(p, q)}{\partial q_\nu} \right]_{q=0} - \frac{\partial \Sigma(p)}{\partial p_\nu}$

The r.h.s. is to be calculated instead of the l.h.s.
Feynman parametric amplitude

Loop momenta are exactly and analytically integrated out. The bare amplitude of a n-loop self-energy like diagram G is

$$M_G^{(2n)} = \left(\frac{-1}{4}\right)^n (n-1)! \int (dz)_G$$

$$= \frac{1}{n-1} \left[\frac{E_0 + C_0}{U^2 V^{n-1}} + \frac{E_1 + C_1}{U^3 V^{n-2}} + \cdots + \frac{E_{n-2} + C_{n-2}}{U^n V} \right]$$

$$+ \left\{ \frac{N_0 + Z_0}{U^2 V^n} + \frac{N_1 + Z_1}{U^3 V^{n-1}} + \cdots + \frac{N_{n-1} + Z_{n-1}}{U^{n+1} V} \right\}.$$

E_i and C_i are from $\partial \Lambda / \partial q$. N_i and Z_i are from $\partial \Sigma / \partial p$.

All are expressed by the building blocks:
- z_i... Feynman parameter of line i.
- B_{ij}... "correlation function" of lines i and line j, determined by and only by the topology of a diagram.
- A_i... scalar current of the external momentum p on line i.
UV and IR counter terms: 4th-order example

Divergence structures of the WT-sum is same as that of the self-energy diagram.

![Diagram of WT-sum and self-energy](image)

On-shell renormalization defines the contributions:

\[
a_{4a} \equiv M_{4a} \text{unrenorm.} - 2L_2 \text{vertex renorm.} \times M_2 \text{Schwinger’s } a_e
\]

\[
a_{4b} \equiv M_{4b} \text{unrenorm.} - dm_2 \text{mass renorm.} \times M_{2*} - B_2 \text{wave func. renorm.} \times M_2
\]

UV divergences arise in \(M_{4a}, M_{4b}, L_2, dm_2, B_2 \).

IR divergences arise in \(a_{4a}, a_{4b}, M_{4b}, M_{2*}, L_2, B_2 \).

Only \(M_2 \) is finite.
UV and IR separation by K-operation

Both a_{4a} and a_{4b} are IR divergent, but the sum $a_{4a} + a_{4b}$ is finite. Thanks to the Kinoshita-Lee-Nauenberg IR cancellation theorem.

Express the finite contribution in terms of the finite quantities:

$$a_{4a} + a_{4b} = \Delta M_{4a} + \Delta M_{4b} - \Delta L B_2,$$

where

$$\Delta M_{4a} \equiv M_{4a} - 2L_2^{UV} M_2,$$
$$\Delta M_{4b} \equiv M_{4b} - dm_2^{UV} M_{2*} - B_2^{UV} M_2 - L_2^R M_2 - dm_2^R M_{2*}$$

UV subtraction
IR subtraction

$$L_2 = L_2^{UV} + L_2^R, \quad B_2 = B_2^{UV} + B_2^R, \quad dm_2 = dm_2^{UV} + dm_2^R,$$

$$\Delta L B_2 \equiv L_2^R + B_2^R$$

UV terms are determined by K-operation.
IR terms are determined as residues of the UV terms.
The K-operation is a simple power counting rule of Feynman parameters.
Easy to implement it as a manipulation in a computer code.
Contribution from the 10th order Set V

Do the same separation for 389 Set V self-energy-like diagrams.
The integrands of $\Delta M_{X001} - \Delta M_{X389}$ are automatically generated.
The residual finite renormalization term is obtained as

$$A^{(10)}_1[\text{Set V}] = \Delta M_{10} + \Delta M_8 \left(-7 \Delta L_2 B\right) + \Delta M_6 \left\{ -5 \Delta L_4 B + 20 (\Delta L_2 B)^2 \right\}$$

$$+ \Delta M_4 \left\{ -3 \Delta L_6 B + 24 \Delta L_4 B \Delta L_2 B - 28 (\Delta L_2 B)^3 \right\}$$

$$+ \Delta M_4 \left(2 \Delta d m_4 \Delta L_2^{*}\right)$$

$$+ M_2 \left\{ - \Delta L_8 B + 8 \Delta L_6 B \Delta L_2 B - 28 \Delta L_4 B \left(\Delta L_2 B \right)^2 + 4 (\Delta L_4 B)^2 + 14 (\Delta L_2 B)^4 \right\}$$

$$+ M_2 \Delta d m_6 \left(2 \Delta L_2^{*}\right)$$

$$+ M_2 \Delta d m_4 \left(-16 \Delta L_2 B \Delta L_2^{*} - 2 \Delta d m_2^{*} \Delta L_2^{*} + \Delta L_4^{*}\right),$$

where

$$\Delta M_{10} = \sum_{G=X001}^{X389} \Delta M_G .$$

Each ΔM_G is to be numerically evaluated.
Automatic code generation for Set V

X253 represents 18 vertex diagrams
6354 vertex diagrams → 389 integrals

Diagram information
X253: “abccdedeba”

1. Amplitude $M(X253)$
2. UV subtraction terms
 $M(X253)^R = M(X253) - (23$ UV terms)$
3. IR subtraction terms
 $\Delta M(X253) = M(X253)^R - (91$ IR terms)$

When they are numerically integrated by VEAGS, quadruple precision of real numbers is used.

HOKUSAI-BigWaterfall 2017-, 2.5 Pflops
HOKUSAI-GreatWave 2015-, 1 Pflops
RICC 2009-2017, 96Tflops
RSCC 2004-2009, 12Tflops
RIKEN Wako
Tools used for automatic code generation

Gencode N our code generator

- Identify diagram information by Perl program
- Create building blocks for a diagram
 linear algebra, eg. inversion of a matrix, by Maple
- Create an bare amplitude
 γ-trace calculation by FORM
- Create UV and IR quantities
 symbolic manipulation by FORM
- Control the whole process by Perl program

All 389 integrands had been constructed by 2006.
Numerical integration

Very difficult numerical integration

- Round-off problem
 - IR cancellation causes the problem.

Need very fast quadruple precision arithmetics

A clue is the library of double-double and quad-double arithmetic.

- Sharp-peak problem
 - An integrand has very sharp peaks at the surface volume of a 13 dimensional hypercube.

Need robust algorithm of multi-dimensional integration

A clue is VEGAS algorithm.

Monte-Carlo integration, error decreases slowly by \(1/\sqrt{N} \)

Huge computational resources are required.

G. P. Lepage 1978
HOKUSAI GW & BW at RIKEN

1 PFLOPS Fujitsu PRIMEHPC FX100 (34560 cores)
April 2015-
Cutting edge supercomputer
Compatibility with the K computer
Availability for highly parallelized programs

2.58 PFLOPS IA Cluster of Xeon Gold 6148 (33600 cores)
October 2017-
Raising HPC environment of RIKEN
Popular architecture
High versatility

Makiko Nio (RIKEN)
Cross-check for integrals of Set V

- Reshuffle integration variables of the 389 integrals.
- 2017 calculation is therefore independent from 2015 calculation.
- Numerical results with different mappings are in good agreement.

Integrals showing relatively large discrepancies:

<table>
<thead>
<tr>
<th>integral</th>
<th>2017 result</th>
<th>2015 result</th>
<th>difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>X100</td>
<td>$-15.232(17)$</td>
<td>$-15.292(33)$</td>
<td>0.060</td>
</tr>
<tr>
<td>X141</td>
<td>$-12.496(17)$</td>
<td>$-12.557(35)$</td>
<td>0.060</td>
</tr>
<tr>
<td>X113</td>
<td>$-4.443(17)$</td>
<td>$-4.385(32)$</td>
<td>-0.058</td>
</tr>
<tr>
<td>X325</td>
<td>$11.539(17)$</td>
<td>$11.596(34)$</td>
<td>-0.056</td>
</tr>
<tr>
<td>X146</td>
<td>$-2.246(17)$</td>
<td>$-2.299(34)$</td>
<td>0.053</td>
</tr>
<tr>
<td>X236</td>
<td>$2.107(21)$</td>
<td>$2.056(18)$</td>
<td>0.051</td>
</tr>
<tr>
<td>X153</td>
<td>$14.845(17)$</td>
<td>$14.894(34)$</td>
<td>-0.048</td>
</tr>
<tr>
<td>X251</td>
<td>$-1.343(20)$</td>
<td>$-1.391(08)$</td>
<td>0.047</td>
</tr>
<tr>
<td>X044</td>
<td>$4.365(16)$</td>
<td>$4.412(28)$</td>
<td>-0.047</td>
</tr>
<tr>
<td>X144</td>
<td>$23.677(17)$</td>
<td>$23.724(37)$</td>
<td>-0.047</td>
</tr>
<tr>
<td>X252</td>
<td>$-10.865(17)$</td>
<td>$-10.909(34)$</td>
<td>0.044</td>
</tr>
<tr>
<td>X256</td>
<td>$-13.996(17)$</td>
<td>$-14.041(34)$</td>
<td>0.044</td>
</tr>
</tbody>
</table>
Independent calculation of Set V

Our 2017 calculation is continued. S. Volkov announced his preliminary result at his ACAT2019 Day 2 talk.

Latest results of Set V

\[A_1^{(10)} [\text{Set V}] = \begin{cases} 7.668 \text{ (159)} & \text{AKN2019} \\ 6.782 \text{ (113)} & \text{S. Volkov, ACAT 2019} \end{cases} \]

- Both rely on numerical means.
- Approaches to Feynman diagrams are different. So, independent.
- Difference -0.89 (20) is about 4.5σ.
- Not seriously affect the current precision of lepton $g - 2$.
- But becomes serious for the future electron experiments.
New value of $A_1^{(10)}$

New and massive evaluation of Set V leads to

the mass-independent 10th-order $A_1^{(10)}$

$$A_1^{(10)} = 6.675 (192) \rightarrow 6.737 (159) \text{ at present}$$

If Volkov’s new result for Set V is used,

the mass-independent 10th-order $A_1^{(10)}$

$$A_1^{(10)} = 5.851 (113)$$

QED mass-dependent terms for a_e

Input parameters:

\[
\begin{align*}
m_e/m_\mu &= 0.483\,633\,170\ (11) \times 10^{-2} & \text{CODATA2014} \\
m_e/m_\tau &= 0.287\,585\ (19) \times 10^{-3} & \text{PDG2018}
\end{align*}
\]

<table>
<thead>
<tr>
<th>Term</th>
<th>Value</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_2^{(4)}(m_e/m_\mu)$</td>
<td>$0.519,738,676\ (24) \times 10^{-6}$</td>
<td>Elend1966</td>
</tr>
<tr>
<td>$A_2^{(4)}(m_e/m_\tau)$</td>
<td>$0.183,790\ (25) \times 10^{-8}$</td>
<td>Elend1966</td>
</tr>
<tr>
<td>$A_3^{(4)}(m_e/m_\mu, m_e/m_\tau)$</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>$A_2^{(6)}(m_e/m_\mu)$</td>
<td>$-0.737,394,164\ (24) \times 10^{-5}$</td>
<td>Samuel&Li1991, Li, Mendel&Samuel1993, Laporta1993, Laporta&Remiddi1993</td>
</tr>
<tr>
<td>$A_2^{(6)}(m_e/m_\tau)$</td>
<td>$-0.658,273\ (79) \times 10^{-7}$</td>
<td>Samuel&Li1991, Li, Mendel&Samuel1993, Laporta1993, Laporta&Remiddi1993</td>
</tr>
<tr>
<td>$A_3^{(6)}(m_e/m_\mu, m_e/m_\tau)$</td>
<td>$0.1909\ (1) \times 10^{-12}$</td>
<td>Passera2006</td>
</tr>
<tr>
<td>$A_2^{(8)}(m_e/m_\mu)$</td>
<td>$0.916,197,070\ (37) \times 10^{-3}$</td>
<td>Kurz et al.2013, AHKN2012</td>
</tr>
<tr>
<td>$A_2^{(8)}(m_e/m_\tau)$</td>
<td>$0.742,92\ (12) \times 10^{-5}$</td>
<td>Kurz et al.2013, AHKN2012</td>
</tr>
<tr>
<td>$A_3^{(8)}(m_e/m_\mu, m_e/m_\tau)$</td>
<td>$0.746,87\ (28) \times 10^{-6}$</td>
<td>Kurz et al.2013, AHKN2012</td>
</tr>
<tr>
<td>$A_2^{(10)}(m_e/m_\mu)$</td>
<td>$-0.003,82\ (39)$</td>
<td>AHKN2012, 2015</td>
</tr>
<tr>
<td>$A_2^{(10)}(m_e/m_\tau)$</td>
<td>$\mathcal{O}(10^{-5})$</td>
<td></td>
</tr>
<tr>
<td>$A_3^{(10)}(m_e/m_\mu, m_e/m_\tau)$</td>
<td>$\mathcal{O}(10^{-5})$</td>
<td></td>
</tr>
</tbody>
</table>
The fine-structure constant α

To obtain the theory prediction of a_e, we need the non-QED value of the fine-structure constant α.

Two values of α from $h/m(X)$ measurements of the atom interferometer:

$$\alpha^{-1}(\text{Rb}) = 137.035\,998\,995\,(85) \quad \text{R. Bouchendira et al. 2011}$$
$$\alpha^{-1}(\text{Cs}) = 137.035\,999\,046\,(27) \quad \text{R. H. Parker et al., 2018}$$

through the relation

$$\alpha^{-1}(X) = \left[\frac{2R_{\infty}}{c} \times \frac{A_r(X)}{A_r(e)} \times \frac{h}{m(X)} \right]^{-1/2}.$$

R_{∞} ... the Rydberg constant
$A_r(X)$... relative atomic mass of a particle X
h ... Planck constant
c ... speed of light
$m(X)$... mass of an atom X
Electron $g-2$, theory v.s. experiment

Hadronic and weak contributions to a_e are F. Jegerlehner, arXiv:1705.00263

$$a_e(\text{hadron}) = 1.693 \pm 0.12 \times 10^{-12}, \quad a_e(\text{weak}) = 0.030 \pm 0.023 \times 10^{-12}.$$

With $\alpha(\text{Rb})$ or $\alpha(\text{Cs})$, the SM prediction of a_e is

$$a_e(\text{theory} : \alpha(\text{Rb})) = 1.159652182.037 \pm 0.72 \times 10^{-12}$$
$$a_e(\text{theory} : \alpha(\text{Cs})) = 1.159652181.606 \pm 0.23 \times 10^{-12}$$

QED 10th, hadron, $\alpha(X)$

The Harvard measurement of a_e:

$$a_e(\text{expt.}) = 1.159652180.72 \pm 0.28 \times 10^{-12}$$

Difference between measurement and theory:

$$a_e(\text{expt.}) - a_e(\text{theory} : \alpha(\text{Rb})) = (-1.31 \pm 0.77) \times 10^{-12} \quad 1.7\sigma$$
$$a_e(\text{expt.}) - a_e(\text{theory} : \alpha(\text{Cs})) = (-0.88 \pm 0.36) \times 10^{-12} \quad 2.4\sigma$$
Electron $g-2$, theory v.s. experiment w/ Volkov’s result

Volkov’s new $A_1^{(10)}$[Set V] makes the theoretical prediction smaller by

$$0.886 \left(\frac{\alpha}{\pi} \right)^5 = 0.0599 \times 10^{-12}$$

and reduce the uncertainty due to the tenth-order QED

$$0.011 \times 10^{-12} \rightarrow 0.0076 \times 10^{-12}$$

Comparison of measurement and theory becomes

$$a_e(\text{expt.}) - a_e(\text{theory} : \alpha(\text{Rb})) = (-1.25 \pm 0.77) \times 10^{-12} \quad 1.6\sigma$$

$$a_e(\text{expt.}) - a_e(\text{theory} : \alpha(\text{Cs})) = (-0.82 \pm 0.36) \times 10^{-12} \quad 2.3\sigma$$

New expts on a_e and $\alpha(\text{Cs})$ bring comparison to the level of 0.03×10^{-12}. Discrepancy in the tenth-order QED $A_1^{(10)}$ must be resolved.
Search of new physics through α

One more value of α is obtained from the electron $g - 2$. Solve $\alpha(a_e)$ from $a_e(\text{expt.}) = a_e(\text{theory})$:

$$\alpha^{-1}(a_e) = 137.035\ 999\ 1496\ (13)(14)(330)$$

QED 10th, hadron, expt.

AKN2018, 2019

Difference between two other determinations of α:

$$\alpha^{-1}(a_e) - \alpha^{-1}(\text{Rb}) = (0.155 \pm 0.091) \times 10^{-6}$$

1.7σ

$$\alpha^{-1}(a_e) - \alpha^{-1}(\text{Cs}) = (0.104 \pm 0.043) \times 10^{-6}$$

2.4σ

$$\alpha^{-1}(\text{Rb}) - \alpha^{-1}(\text{Cs}) = (-0.051 \pm 0.089) \times 10^{-6}$$

0.6σ

New physics or misinterpretation of the SM physics? Misinterpretation in experiment or theory?
α\((a_e) \) and α\((Rb) \) are used to determine exact values of some fundamental constants.

In the new SI, the Planck constant \(h \), the elementary charge \(e \), the Boltzmann constant \(k \), and the Avogadro number \(N_A \) become defined numbers like the speed of light \(c \):

\[
\begin{align*}
 h &= 6.626 \, 070 \, 15 \times 10^{-34} \text{ Js}, \\
 e &= 1.602 \, 176 \, 634 \times 10^{-19} \text{ C}, \\
 k &= 1.380 \, 649 \times 10^{-23} \text{ JK}^{-1}, \\
 N_A &= 6.022 \, 140 \, 76 \times 10^{23} \text{ mol}^{-1}.
\end{align*}
\]

Definition of kilogram is based on the Planck constant \(h \) after the new SI launches in 2019.

Good bye, the International Prototype Kilogram.

Mass-dependent terms for a_μ

For higher-order terms, the electron-loop contributions are dominant.

<table>
<thead>
<tr>
<th>Term</th>
<th>Value (76)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A^{(4)}2 (m\mu/m_e)$</td>
<td>1.094 258 3093 (76)</td>
<td>Elend1966</td>
</tr>
<tr>
<td>$A^{(4)}2 (m\mu/m_\tau)$</td>
<td>0.000 078 076 (11)</td>
<td>Elend1966</td>
</tr>
<tr>
<td>$A^{(4)}3 (m\mu/m_e, m_\mu/m_\tau)$</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term</th>
<th>Value (20)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A^{(6)}2 (m\mu/m_\tau)$</td>
<td>0.000 360 671 (94)</td>
<td>Samuel&Li1990,1992,1993 Laporta1993,Laporta&Remiddi1993</td>
</tr>
<tr>
<td>$A^{(6)}3 (m\mu/m_e, m_\mu/m_\tau)$</td>
<td>0.000 527 738 (75)</td>
<td>Laporta1993,Laporta&Remiddi1993</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term</th>
<th>Value (60)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A^{(8)}2 (m\mu/m_e)$</td>
<td>132.6852 (60)</td>
<td>AHKN2012, Kurz et al.2016a</td>
</tr>
<tr>
<td>$A^{(8)}2 (m\mu/m_\tau)$</td>
<td>0.042 4941 (53)</td>
<td>AHKN2012, Kurz et al.2016b</td>
</tr>
<tr>
<td>$A^{(8)}3 (m\mu/m_e, m_\mu/m_\tau)$</td>
<td>0.062 722 (10)</td>
<td>AHKN2012, Kurz et al.2016a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term</th>
<th>Value (86)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A^{(10)}2 (m\mu/m_e)$</td>
<td>742.32 (86)</td>
<td>AHKN2012</td>
</tr>
<tr>
<td>$A^{(10)}2 (m\mu/m_\tau)$</td>
<td>-0.0656 (45)</td>
<td>AHKN2012</td>
</tr>
<tr>
<td>$A^{(10)}3 (m\mu/m_e, m_\mu/m_\tau)$</td>
<td>2.011 (10)</td>
<td>AHKN2012</td>
</tr>
</tbody>
</table>
The large enhancement factor comes from the light-by-light diagrams:

\[
\frac{2}{3} \pi^2 \ln(m_\mu/m_e) \sim 35
\]

A factor \(\pi \) comes from the integration over a Coulomb loop.

Insertion of the 2nd-order VP adds another log factor:

\[
\frac{2}{3} \ln(m_\mu/m_e) - \frac{5}{9} \sim 3
\]

T. Kinoshita started developing his numerical calculation method of QED to investigate this 6th-order light-by-light diagrams for \(a_\mu \).

QED 8th-order mass-dependent term $A_2^{(8)}$

Mass-dependence comes from diagrams w/ fermion loops:

- I(a), I(b), II(a), II(b), II(c)
 2nd and/or 4th-order VP functions
- I(c) Checked w/ the 1-dimensional integral of the VP function
- I(d) Checked w/ the Padé approximated VP function
- IV(b), IV(c), IV(d)
 Checked w/ the asymptotic expansion

Analytic calculations of $A_2^{(8)}$

Analytic calculation of A_2 and A_3 are a little easier than A_1. But still tough for the higher orders.

- Expansion parameters: $m_e/m_\mu = 1/206.7 \cdots$, $m_\mu/m_\tau = 1/16.8 \cdots$
- Different analytic structures: $m_{\text{loop}} \gg m_{\text{external}}$ or $m_{\text{loop}} \ll m_{\text{external}}$

Analytic expansions of the 8th order were obtained in 2014 and in 2016:

- $m_{\text{loop}} \ll m_{\text{external}}$ A. Kurz et al. PRD93, 053017(2016)
- $m_{\text{loop}} \gg m_{\text{external}}$ A. Kurz et al. PoS LL2014, 051(2014)

- Diagrams involving a light-by-light loop are very difficult to evaluate.
- The analytic expansion results are less accurate than the numerical results.
- Both are in good agreement.
QED 10th-order vertex diagrams

12,672 Feynman vertex diagrams divided into 32 subsets:
- 6,354 vertex diagrams w/o a fermion loop, Set V. difficult
- 6,318 diagrams w/ closed fermion loops, Set I-IV, IV. easier
QED 10th-order mass-dependent term $A_2^{(10)}$

All diagrams have been numerically calculated.

Many consistency checks:

- LO contribution can be estimated with help of renormalization group. **AHKN (2012)**

- Non-relativistic calculation is also useful for VI(k), the light-by-light diagram to which six photons are attached. **A. Kataev 1992, 1995, 2006**

- Padé approximated 4-loop vacuum-polarization function. **S. Karshenboim, 1993**

- Asymptotic expansion of the diagrams w/ 2nd- and/or 4th-order VP functions. **P. A. Baikov, A. Maier, and P. Marquard, 2013**

- S. Laporta, 1994
QED contributions to a_μ, muon $g-2$

With α(Cs) and $\alpha(a_e)$ the QED contribution to a_μ is

\[
\begin{align*}
 a_\mu(\text{QED : } \alpha(\text{Cs})) &= 1 165 847 189.31 \times 10^{-12} \\
 a_\mu(\text{QED : } \alpha(a_e)) &= 1 165 847 188.42 \times 10^{-12}
\end{align*}
\]

lepton-mass ratios, QED 8th, QED 10th, α, combined

All are sufficiently accurate for the current and future measurements of a_μ. Further numerical improvement on QED 8th and 10th is possible. Targets are diagrams involving a light-by-light scattering subdiagram. How about the 12th-order contribution?

The 6th-order light-by-light + three 2nd-order VP insertions:

\[
\left(\frac{\alpha}{\pi}\right)^6 \times \underbrace{10}_{\text{ways of insertion}} \times \underbrace{3^3}_{3 \text{ VP}} \times \underbrace{20}_{LbyL} \sim 0.8 \times 10^{-12}.
\]

The size of the whole 12th-order contribution might be $O(10^{-12})$.

Need a crude estimate of the 12th-order contribution.
QED $g-2$ up to the 8th-order contribution has been firmly established in last 3 years.

QED $g-2$ of the 10th order has been extensively calculated and checked.

QED $g-2$ is ready for the on-going new experiments of electron-positron $g-2$ and of muon $g-2$.

QED $g-2$ is served for the new SI. After the new SI launches, the fine-structure constant α is the unique source of uncertainties of other fundamental physical constants.

QED $g-2$ shows that we are able to compute many and complex Feynman diagrams using analytic/numerical methods with help of powerful computers.