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| the ACDM view of the Universe
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Dark Energy
Accelerated Expansion

Afterglow Light
Pattern  Dark Ages Development of
375,000 yrs. Galaxies, Planets, etc.

1st Stars
about 400 million yrs.

Big Bang Expansion Large Synoptic Survey Telescope

13.77 billion years

NASAWMAP Science Team



the Large Synoptic Survey Telescope

LSST in a few numbers

- 1000 images each night, each one is 3.2 GB and 40 full moons
= 15 TB/night for 10 years
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the Large Synoptic Survey Telescope

LSST in a few numbers
- 1000 images each night, each one is 3.2 GB and 40 full moons
= 15 TB/night for 10 years
- Covers 18,000 square degrees (40% of the sky)

- Tens of billions of objects, each one observed ~ 1000 times



the challenge for modern surveys

= Modern surveys will provide large volumes of high quality data
LSST forecast on dark energy parameters

Clusters Y10

SL Y10

stage 111

SN Y10

3x2pt Y10

LSST all+Stage 111

A Blessing o

e Unprecedented statistical power

e Great potential for new discoveries
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LSST forecast on dark energy parameters
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the challenge for modern surveys

= Modern surveys will provide large volumes of high quality data
LSST forecast on dark energy parameters

. Clusters Y10
A Blessing SQ,W
J
5 Ao LR %, el
e Unprecedented statistical power \l?,r Y10
Stage 11
e Great potential for new discoveries o
ST N W A0 Wy Q. < I
A Curse a &
e Existing methods are reaching their limits at every o
K
step of the science analysis
e Control of systematic uncertainties becomes \f“,Q
paramount | ' . :
/\\q' N N N

Awy

= Dire need for novel analysis techniques to fully realize the potential of modern surveys.



| Outline of this talk

1. Deep residual networks for the detection of gravitational lenses
2. Graph Convolutional Networks for modelling galaxy properties
3. Towards a New Inference Paradigm with Deep Learning

4. Conclusion



Deep residual networks for the
detection of gravitational lenses




| Galaxy-Galaxy Strong Lensing
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example of application: gravitational time delays
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| the problem: finding strong lenses
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| the problem: finding strong lenses
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| automated lens searches: RingFinder (Gavazzi et al. 2014)

gri composite g—ai detected areas HST images



| automated lens searches: RingFinder (Gavazzi et al. 2014)

gri composite g—ai detected areas HST images

Visual inspection time required: ~ 30 person-minutes / deg?



extrapolation to future surveys
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extrapolation to future surveys

105 il number of strong lenses
Il man-hour required for visual inspection (RingFinder)

10%

T T

103

102

T T T T T T

10!

TTTTT

100
CFHTLS DES LSST

Gavazzi et al. (2014), Collett (2015)

= LSST would require an estimated 10* man-hours.



How can we robustly detect these rare objects without
needing an army of grad students ?



| CMU Deeplens: deep residual learning for strong lens finding

Image

Conv 7x7-32, ELU, B. N. oupL sire

32xt5x45

output size:

o output sire

ResNet-32-61, /2 ot iz
ResNet-32-61

" JE——

[t

ResNet-128-256, /2 output size;

256366

ResNet-128-256
ResNet-128-256
s output size:
ResNet-256-512, /2 512x3x3
ResNet-256-512
ResNet-256-512

fe 1, sigmoid output size 1

Lanusse et al. (2017)

e Deep ResNet (46 layers) with pre-activated bottleneck residual units
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| CMU Deeplens: deep residual learning for strong lens finding

.
e e Deep ResNet (46 layers) with pre-activated bottleneck residual units
e Training on simulated LSST lenses:
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output size:
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| CMU Deeplens: deep residual learning for strong lens finding

Cony 7x7-32, ELU, B. N. output size:
32x45x45

e Deep ResNet (46 layers) with pre-activated bottleneck residual units
i

e Training on simulated LSST lenses:

SN =5 SN = 15
0 E

S/N =20

output size:
128x12x12

ResNot-64-128
. output size:
ResNet-128-256, /2 A

ResNet-256-512

e Classification of 45x45 images in 350 us

= 9 hours to classify a sample of 108 lens candidates on single GPU

Lanusse et al. (2017)



| Euclid strong lens finding challenge
Metcalf, ..., Lanusse, et al. (2018)
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Ground based simulations Space based simulations
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Euclid strong lens finding challenge
Metcalf, ..., Lanusse, et al. (2018)

1.00

0.75-=

ositive Rate

0.00 025 050 0.75 1.000.00 025 050 0.75 1.00
False Positive Rate

e CMU DeepLens wins over 24 other methods (including other CNN methods) in space and

ground challenge.
e Significantly outperforms human classification accuracy.

11



takeaway message

Deep Learning for Low Level Processing

e An example of Deep Learning allowing us to handle the volume and data rate at the
image level
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takeaway message

Deep Learning for Low Level Processing

e An example of Deep Learning allowing us to handle the volume and data rate at the

image level

e Our automated lens finder is faster and more reliable than human volunteers.

e Larger and more robust samples for the science analysis.

Many other applications of classifications, for instance for time series classification:

SN CC (ID: 20156618, redshift: 0.373)

SIS A
EIRREI

- Bayesian Recurrent Neural Networks for supernovae detection
(Moller & De Boissiere, 2019), arXiv:1901.06384

12



Graph Convolutional Networks
for modelling galaxy properties




weak gravitational lensing and the intrinsic alignment of galaxies

(blurred)

> T‘ Propagation through the Earth’s
S atmosphere and telescope optics

Realisatton on detector

Galaxies

(blurred) (pixellated)
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| weak gravitational lensing and the intrinsic alignment of galaxies
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| weak gravitational lensing and the intrinsic alignment of galaxies

Galaxies randomly
distributed

® V' BN

Slight alignment

€=¢+ywith <ee>=0
S

not completely true

<e > = <y > + <ee> + < >+<ey >
— —— N——
measured cosmological signal 11 GI
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| weak gravitational lensing and the intrinsic alignment of galaxies

Impact on dark energy constraints
12

"' ”. 4\

Galaxies randomly

. Slight alignment
distributed of = NLA model in data; Es
assume no lAs k
) , _, = NLA model in data;
e=¢€ +7 with < €j€; >= 0 assume LA model
N————’ NLA nulling
not completely true -7 -6 -5 -4 -3 -2 -1 0
Wo
Kirk et al. (2015)
<e€ > = <’y’y’> +  <ee > + <'y€§>+<e;'y'>
— —— N——

measured cosmological signal 11 GI



why does this happen ?

Kiessling et al. (2015)

e Tidal interactions with local gravitational potential
= Can be analytically modeled on large scales
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why does this happen ?
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e Tidal interactions with local gravitational potential
= Can be analytically modeled on large scales

e Much more complicated in details, impacted by baryonic physics

= Study requires expensive hydrodynamical simulations
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why galaxy alignments are complicated
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How to produce mock galaxy catalogs on large cosmological
volumes with realistic alignments ?



inpainting intrinsic aligments on N-body simulations

Massive Black Il (Khandai et al, 2015)

Image credit: Tenneti et al. (2015)

p (33p | xom; Mpw, . . .)

16



inpainting intrinsic aligments on N-body simulations

Massive Black Il (Khandai et al, 2015) Dark Matter Only

Image credit: Tenneti et al. (2015)

gal ~ p (a3p | xom, Mpwm;, . . .)
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inpainting intrinsic aligments on N-body simulations

Massive Black Il (Khandai et al, 2015)

Image credit: Tenneti et al. (2015)
gal ~ p (a3p | xpm, Mpm, - - )

— How to model and sample from this conditional distribution ? 16



e iy
~ MEB simulation, animation credit: Kim Albrecht



| Graph Convolutional Networks (Kipf & Welling, 2017)

Hidden layer Hidden layer
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| Graph Convolutional Networks (Kipf & Welling, 2017)

Hidden layer

Hidden layer

Computation of the activation y; for a

node i in the graph:

i=b+ Woh + » w;;Wih;
Y 0 Z A

self-connection

j
JEN;
| ——

average over neighbors

e Approximation of a spectral convolution on the graph, restricted to first neighbors

= Only requires one multiplication by the sparse graph adjacency matrix
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| Graph Convolutional Networks (Kipf & Welling, 2017)

Hidden layer

Hidden layer

node i in the graph:

yi = b + Woh,' + E W,"j hj
~—— -
settconnection 4 €N
N———

Computation of the activation y; for a

average over neighbors

e Approximation of a spectral convolution on the graph, restricted to first neighbors
= Only requires one multiplication by the sparse graph adjacency matrix

e To preserve information about the respective 3D positions of the nodes, we introduce a

directional graph convolution:

M

yi=b+Wqh; + Z Z am(xi, x;) wij Wph;

m=1jeN;

18



Wasserstein Generative Adversarial Networks on graphs

Random noise

Generated signal

Hidden layer Hidden layer
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e Simple extension to the graph of a standard Wasserstein GAN, using our graph



T N= T T
: O p O d)n
: -~ NS
‘>0 0w
: N~000 N



| proof of concept on MNIST
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| proof of concept on MNIST
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Example of training data Example of WGAN sample
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| proof of concept on MNIST

Example of training data
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Example of WGAN sample
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application to intrinsic alignments

] —— Massive Black Il
10713 --- GCWGAN-GP
10723
3 E
10733
104 —T T T T T T T
1071 10° 101
R [Mpc/h]

ED correlation function, 1-halo term

1071 g -~ ---- GCWGAN-GP
< 1073
1073 3
104 T T —r—T T
1071 100 10!
R [Mpc/h]

EE correlation function, 1-halo term

—— Massive Black Il

e Successfully samples 3D galaxy orientations with the correct alignment, just from dark

matter information

21



takeaway message

Deep Learning for Improving Cosmological Simulation

e Exciting new framework to empirically populate large volume simulations with realistic
galaxy populations

22



takeaway message

Deep Learning for Improving Cosmological Simulation
e Exciting new framework to empirically populate large volume simulations with realistic

galaxy populations

e Will add to the realism of cosmological simulations and allow us to test IA mitigation

e Being implemented as part of the simulation pipeline for the LSST DESC Second Data
Challenge

22



Towards a New Inference
Paradigm with Deep Learning




traditional cosmological

a8

340° 338° 336° 334°

340° 338° 336° 334°

(Alonso et al. 2018)

inference

332°

332°

e Measure the ellipticity € = ¢; + 7y of all galaxies
= Noisy tracer of the weak lensing shear
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traditional cosmological inference

HSC cosmic shear power spectrum e Measure the ellipticity € = ¢; + v of all galaxies

F T T T ] = Noisy tracer of the weak lensing shear ~
—_ - No tomograph 1 . .
v - graphy - e Compute summary statistics based on 2pt functions,
o 1 -
— E E e.g. the power spectrum
[ C “‘E/I ]
o L ]
= [ ]
[ 5
O 0.1 3 =
— - T ]
X - P
= 0.01 | ol |
) 3 e T 1/| | 1 1 E
1000
1
(Hikage, ..., Lanusse, et al. 2018)

23



traditional cosmological inference

HSC Y1 constraints on (Sg, Q)

1.04 B 1SC Y1
B Planck
EEl HSC Y1 + Planck
= 097
=
Il
< 08
Z
0.7
0.6 T T T
0.1 0.2 0.3
Qi
(Hikage, ..., Lanusse, et al. 2018)

0.4

e Measure the ellipticity € = ¢; 4+ v of all galaxies
= Noisy tracer of the weak lensing shear
e Compute summary statistics based on 2pt functions,

e.g. the power spectrum

e Run an MCMC to recover a posterior on model
parameters, using an analytic likelihood

p(0]x) o< p(x|0) p(0)
——
likelihood prior
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traditional cosmological inference

—
i)

Sg(a =04

HSC Y1 constraints on (Sg, Q)

1.04 B 1SC Y1
B Planck
B HSC Y1 + Planck
0.94
0.8 ’
0.7
0.6 T T T
0.1 0.2 0.3 0.4
Qi
(Hikage, ..., Lanusse, et al. 2018)

e Measure the ellipticity € = ¢; 4+ v of all galaxies
= Noisy tracer of the weak lensing shear

e Compute summary statistics based on 2pt functions,
e.g. the power spectrum

e Run an MCMC to recover a posterior on model
parameters, using an analytic likelihood

p(0]x) o< p(x|0) p(0)
——
likelihood prior

Main limitation: the need for an explicit likelihood

We can only compute the likelihood for simple summary statistics and on large scales
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traditional cosmological inference

—
i)

Sg(a =04

HSC Y1 constraints on (Sg, m) e Measure the ellipticity € = ¢; + v of all galaxies

101 = lljl"\(m:l = Noisy tracer of the weak lensing shear
0ol S HSO VL Planck e Compute summary statistics based on 2pt functions,
e.g. the power spectrum

08 ’ e Run an MCMC to recover a posterior on model
o parameters, using an analytic likelihood
06 : : : p(0]x) o< p(x|0) p(0)

0.1 0.2 0.3 0.4 S—— =~

. likelihood prior

(Hikage, ..., Lanusse, et al. 2018)

Main limitation: the need for an explicit likelihood

We can only compute the likelihood for simple summary statistics and on large scales

= We are dismissing most of the information!
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Can | use a Deep Learning to perform a proper Bayesian
inference without likelihoods?



let us rephrase the question

e | assume a forward model of the observations:

p(x) = p(x|0) p(0)

All | ask is the ability to sample from the model, to obtain D = {x;,0,}ien
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e | assume a forward model of the observations:
p(x) = p(x|0) p(0)

All | ask is the ability to sample from the model, to obtain D = {x;,0,}ien
e | am going to assume q4(0|x) a parametric conditional density
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let us rephrase the question

e | assume a forward model of the observations:

p(x) = p(x10) p(6)
All | ask is the ability to sample from the model, to obtain D = {x;, 0,}ien

e | am going to assume g,(6|x) a parametric conditional density
e Optimize the parameters ¢ of g, according to
m¢in Z — log g4(0i]x)
i
In the limit of large number of samples and sufficient flexibility

|5+ (61x) = p(6]x) |

= One can asymptotically recover the posterior by optimizing a parametric estimator over

the Bayesian joint distribution 24



let us rephrase the question

e | assume a forward model of the observations:

p(x) = p(x10) p(6)
All | ask is the ability to sample from the model, to obtain D = {x;, 0,}ien

e | am going to assume g,(6|x) a parametric conditional density
e Optimize the parameters ¢ of g, according to
m¢in Z — log g4(0i]x)
i
In the limit of large number of samples and sufficient flexibility

|4+ (01x) ~ p(6]x) |

= One can asymptotically recover the posterior by optimizing a Deep Neural Network over a

simulated training set 24



Neural Density Estimation

congititt))'lr]tal
robabili
pdensityy ﬁ p(t|x)
{ } mixture
model

parameter z
vector

neural
network
input
vector ﬁ X

Bishop (1994)

e Mixture Density Networks (MDN)
p(0|x) = Hﬂ‘, wi(x), oi(x))

DELFI method (Alsing et al. 2018) based on Papamakarios &
Murray (2016)
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Neural Density Estimation

conditional
probability
density

i pctim

AN

AN I
A

parameter Z
vector

2

input
vector ﬁ X

neural
network

Bishop (1994)

e Mixture Density Networks (MDN)

p(0|x) =

[

pi(x), 0i(x))

DELFI method (Alsing et al. 2018) based on Papamakarios &

Murray (2016)

e Flourishing Machine Learning literature on density estimators

GLOW, (Kingma & Dhariwal, 2018) 25



deep residual network for amortized inference

e Deep Residual Network with mixture density output

output size:
64x23x23

output size :1

(Lanusse & Lin, in prep.)
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deep residual network for amortized inference

e Deep Residual Network with mixture density output

e Training on raw weak lensing maps simulated for different cosmologies

1F TensorFlow

tput size:
128x12x12

output size:
512633

Google Cloud Platform

(Lanusse & Lin, in prep.) 26



deep residual network for amortized inference

output size:
32xa5x15

output size:
B2asxds

output size:
128¢12x12

output size :1

(Lanusse & Lin, in prep.)

Og

e Deep Residual Network with mixture density output
e Training on raw weak lensing maps simulated for different cosmologies

e Parameter constraints and posterior validation by Simulation-Based
Calibration (Talts et al. 2018):

1.1

0.9 4

0.7 1

0.5 4

--= Approx Likelihood
...... MDN-ResNet
m 1-0, 68.3%

S — 2-0,95.4%

200 400 600 800 1000
Rank Statistic

0 200 400 600 800
Rank Gratictic

0.2 0.4 0.6 0.8
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deep residual network for amortized inference

e Deep Residual Network with mixture density output

e Training on raw weak lensing maps simulated for different cosmologies

e Parameter constraints and posterior validation by Simulation-Based
Calibration (Talts et al. 2018):

-=--Approx Likelihood
------ MDN-ResNet

s 1-0, 68.3%
— 2-0,95.4%

128x12x12 1.1

400 600 800 1000
Rank Statistic

400 600 800 1000
Rank Gratictic

output size :1 0.2 0.4 0.6 0.8

QOm

(Lanusse & Lin, in prep.) —> Completely automated end-to-end inference methodology 2



| wait.... what about summary statistics?
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| wait.... what about summary statistics?

x(1) —
(2) — .. . .. .
) Variational Mutual Information Maximization
x(3) —

x(4) —

I(y;0) =Eg.0) logp(d | y) ] + H(©)
>Eqylloggs(0|y)]  + H(O)

x(5) —

x(6) —

) -0
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wait.... what about summary statistics?

x(1) —

Variational Mutual Information Maximization

I(y;0) =Eg.0) logp(d | y) ] + H(©)

e Not derived from Fisher information around a fiducial value, asymptotically optimal over
the entire parameter space
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wait.... what about summary statistics?

x(1) —

2 - - - - - - -
X Variational Mutual Information Maximization

— §(1)

i) I(y;0) =Ey,0)[ logp(6 | y) ] + H(©)

e Not derived from Fisher information around a fiducial value, asymptotically optimal over
the entire parameter space

e Comes for free by training a deep MDN with a bottleneck
= The learned statistics can then be reused with different Likelihood-Free techniques

27



takeaway message

Deep Learning For Cosmological Inference

e This is part of the broader class of Likelihood-Free Inference methods

- Shifts the physics from signal modeling and statistics extraction to simulation

= Will be essential to maximize the scientific return of Stage IV surveys.
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Conclusion
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What can deep learning do for cosmology ?

e Open new and powerful ways to look at the data

e Image detection for finding rare astrophysical objects
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conclusion

What can deep learning do for cosmology ?

e Open new and powerful ways to look at the data

e Image detection for finding rare astrophysical objects

e Data driven way of complementing our physical models

e Modeling galaxy properties in numerical simulations

e New strategies for inference for increasingly complex surveys
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Thank you !
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