Where is Deep Learning Impacting Modern Cosmology?

19th International ACAT Workshop, Saas-Fee, Switzerland

François Lanusse

March 15, 2019

University of California Berkeley Lawrence Berkeley National Laboratory

Institute for Data Science.

the ∧CDM view of the Universe

NASA/WMAP Science Team

the ACDM view of the Universe

the Large Synoptic Survey Telescope

LSST in a few numbers

- 1000 images each night, each one is $3.2\ GB$ and $40\ full$ moons
 - \implies 15 TB/night for 10 years

the Large Synoptic Survey Telescope

LSST in a few numbers

- 1000 images each night, each one is 3.2 GB and 40 full moons \implies 15 TB/night for 10 years
- Covers 18,000 square degrees (40% of the sky)

the Large Synoptic Survey Telescope

LSST in a few numbers

- 1000 images each night, each one is 3.2 GB and 40 full moons \implies 15 TB/night for 10 years
- Covers 18,000 square degrees (40% of the sky)
- Tens of billions of objects, each one observed ~ 1000 times

⇒ Modern surveys will provide large volumes of high quality data

A Blessing

- Unprecedented statistical power
- Great potential for new discoveries

LSST forecast on dark energy parameters

⇒ Modern surveys will provide large volumes of high quality data

A Blessing

- Unprecedented statistical power
- Great potential for new discoveries

LSST forecast on dark energy parameters

⇒ Modern surveys will provide large volumes of high quality data

A Blessing

- Unprecedented statistical power
- Great potential for new discoveries

A Curse

- Existing methods are reaching their limits at every step of the science analysis
- Control of systematic uncertainties becomes paramount

LSST forecast on dark energy parameters

⇒ Modern surveys will provide large volumes of high quality data

A Blessing

- Unprecedented statistical power
- Great potential for new discoveries

A Curse

- Existing methods are reaching their limits at every step of the science analysis
- Control of systematic uncertainties becomes paramount

LSST forecast on dark energy parameters

 \Longrightarrow Dire need for **novel analysis techniques** to fully realize the potential of modern surveys.

Outline of this talk

- 1. Deep residual networks for the detection of gravitational lenses
- 2. Graph Convolutional Networks for modelling galaxy properties
- 3. Towards a New Inference Paradigm with Deep Learning
- 4. Conclusion

detection of gravitational lenses

Deep residual networks for the

example of application: gravitational time delays

example of application: gravitational time delays

$$\Delta t_{ij} = rac{1+z_L}{c} \underbrace{rac{D_L \ D_S}{D_{LS}}}_{lpha \ B^{-1}} \left[rac{(oldsymbol{ heta}_i - oldsymbol{eta})^2}{2} - \psi(oldsymbol{ heta}_i) + rac{(oldsymbol{ heta}_j - oldsymbol{eta})^2}{2} + \psi(oldsymbol{ heta}_j)
ight]$$

the problem: finding strong lenses

the problem: finding strong lenses

automated lens searches: RingFinder (Gavazzi et al. 2014)

automated lens searches: RingFinder (Gavazzi et al. 2014)

Visual inspection time required: ~ 30 person-minutes / deg²

extrapolation to future surveys

Gavazzi et al. (2014), Collett (2015)

extrapolation to future surveys

Gavazzi et al. (2014), Collett (2015)

extrapolation to future surveys

Gavazzi et al. (2014), Collett (2015)

 \implies LSST would require an estimated 10⁴ man-hours.

How can we robustly detect these rare objects without needing an army of grad students ?

CMU DeepLens: deep residual learning for strong lens finding

• Deep ResNet (46 layers) with pre-activated bottleneck residual units

Lanusse et al. (2017)

CMU DeepLens: deep residual learning for strong lens finding

- Deep ResNet (46 layers) with pre-activated bottleneck residual units
- Training on simulated LSST lenses:

Lanusse et al. (2017)

CMU DeepLens: deep residual learning for strong lens finding

- Deep ResNet (46 layers) with pre-activated bottleneck residual units
- Training on simulated LSST lenses:

- ullet Classification of 45x45 images in 350 $\mu {
 m s}$
 - \implies 9 hours to classify a sample of 10^8 lens candidates on single GPU

Lanusse et al. (2017)

Euclid strong lens finding challenge

Metcalf, ..., Lanusse, et al. (2018)

Space based simulations

Ground based simulations

Euclid strong lens finding challenge

Metcalf, ..., Lanusse, et al. (2018)

- CMU DeepLens wins over 24 other methods (including other CNN methods) in space and ground challenge.
- Significantly outperforms human classification accuracy.

takeaway message

Deep Learning for Low Level Processing

 An example of Deep Learning allowing us to handle the volume and data rate at the image level

takeaway message

Deep Learning for Low Level Processing

- An example of Deep Learning allowing us to handle the volume and data rate at the image level
- Our automated lens finder is faster and more reliable than human volunteers.
 - Larger and more robust samples for the science analysis.

takeaway message

Deep Learning for Low Level Processing

- An example of Deep Learning allowing us to handle the volume and data rate at the image level
- Our automated lens finder is faster and more reliable than human volunteers.
 - Larger and more robust samples for the science analysis.

Many other applications of classifications, for instance for time series classification:

- Bayesian Recurrent Neural Networks for supernovae detection (Moller & De Boissiere, 2019), arXiv:1901.06384

Graph Convolutional Networks

for modelling galaxy properties

Galaxies randomly distributed

Slight alignment

$$\epsilon = \epsilon_i + \gamma \text{ with } < \epsilon_i \epsilon_i' >= 0$$

$$\epsilon = \epsilon_i + \gamma$$
 with $\underbrace{<\epsilon_i \epsilon_i'>=0}_{
m not\ completely\ true}$

$$\underbrace{\langle \epsilon \epsilon' \rangle}_{\text{measured}} = \underbrace{\langle \gamma \gamma' \rangle}_{\text{cosmological signal}} + \underbrace{\langle \epsilon_i \epsilon'_i \rangle}_{\text{II}} + \underbrace{\langle \gamma \epsilon'_i \rangle + \langle \epsilon_i \gamma' \rangle}_{\text{GI}}$$

Kirk et al. (2015)

$$\underbrace{\langle \epsilon \epsilon' \rangle}_{\text{measured}} = \underbrace{\langle \gamma \gamma' \rangle}_{\text{cosmological signal}} + \underbrace{\langle \epsilon_i \epsilon'_i \rangle}_{\text{II}} + \underbrace{\langle \gamma \epsilon'_i \rangle + \langle \epsilon_i \gamma' \rangle}_{\text{GI}}$$

why does this happen?

Kiessling et al. (2015)

 \bullet Tidal interactions with local gravitational potential \Longrightarrow Can be analytically modeled on large scales

why does this happen?

Kiessling et al. (2015)

- ullet Tidal interactions with local gravitational potential \Longrightarrow Can be analytically modeled on large scales
- Much more complicated in details, impacted by baryonic physics

why does this happen?

Kiessling et al. (2015)

- Tidal interactions with local gravitational potential
 Can be analytically modeled on large scales
- Much more complicated in details, impacted by baryonic physics
 Study requires expensive hydrodynamical simulations

why galaxy alignments are complicated

How to produce mock galaxy catalogs on large cosmological volumes with realistic alignments ?

inpainting intrinsic aligments on N-body simulations

Massive Black II (Khandai et al, 2015)

Image credit: Tenneti et al. (2015)

$$p\left(\vec{a}_{3D} \mid x_{DM}, M_{DM}, \ldots\right)$$

inpainting intrinsic aligments on N-body simulations

Massive Black II (Khandai et al, 2015)

20 Mpc/t

Dark Matter Only

Image credit: Tenneti et al. (2015)

$$\operatorname{gal} \sim p \; (\vec{a}_{3D} \mid x_{DM}, M_{DM}, \ldots)$$

inpainting intrinsic aligments on N-body simulations

Massive Black II (Khandai et al, 2015)

Image credit: Tenneti et al. (2015)

gal
$$\sim p \ (\vec{a}_{3D} \mid x_{DM}, M_{DM}, \ldots)$$

⇒ How to **model** and **sample** from this conditional distribution?

Graph Convolutional Networks (Kipf & Welling, 2017)

Computation of the activation y_i for a node i in the graph:

$$y_i = b + \underbrace{ igvee_0 h_i}_{ ext{self-connection}} + \underbrace{ \sum_{j \in \mathcal{N}_i} w_{i,j} igvee_1 h_j}_{ ext{average over neighbors}}$$

Graph Convolutional Networks (Kipf & Welling, 2017)

Approximation of a spectral convolution on the graph, restricted to first neighbors
 Only requires one multiplication by the sparse graph adjacency matrix

Graph Convolutional Networks (Kipf & Welling, 2017)

Computation of the activation y_i for a node i in the graph:

$$y_i = b + \underbrace{\mathbf{W_0}h_i}_{\text{self-connection}} + \underbrace{\sum_{j \in \mathcal{N}_i} w_{i,j} \mathbf{W_1}h_j}_{\text{average over neighbors}}$$

- Approximation of a spectral convolution on the graph, restricted to first neighbors
 Only requires one multiplication by the sparse graph adjacency matrix
- To preserve information about the respective 3D positions of the nodes, we introduce a directional graph convolution:

$$y_i = b + \mathbf{W_0}h_i + \sum_{m=1}^{M} \sum_{i \in \mathcal{N}_i} q_m(\mathbf{x}_i, \mathbf{x}_j) \ w_{i,j} \ \mathbf{W}_m h_j$$

Wasserstein Generative Adversarial Networks on graphs

• Simple extension to the graph of a standard Wasserstein GAN, using our graph

Example of training data

Example of training data

Example of WGAN sample

Example of training data

Example of WGAN sample

application to intrinsic alignments

 Successfully samples 3D galaxy orientations with the correct alignment, just from dark matter information

takeaway message

Deep Learning for Improving Cosmological Simulation

• Exciting new framework to empirically populate large volume simulations with realistic galaxy populations

takeaway message

Deep Learning for Improving Cosmological Simulation

- Exciting new framework to empirically populate large volume simulations with realistic galaxy populations
- Will add to the realism of cosmological simulations and allow us to test IA mitigation
 - Being implemented as part of the simulation pipeline for the LSST DESC Second Data Challenge

Towards a New Inference

Paradigm with Deep Learning

• Measure the ellipticity $\epsilon = \epsilon_i + \gamma$ of all galaxies \implies Noisy tracer of the weak lensing shear γ

HSC cosmic shear power spectrum

(Hikage, ..., Lanusse, et al. 2018)

- Measure the ellipticity $\epsilon = \epsilon_i + \gamma$ of all galaxies \Longrightarrow Noisy tracer of the weak lensing shear γ
- Compute summary statistics based on 2pt functions,
 e.g. the power spectrum

(Hikage, ..., Lanusse, et al. 2018)

- Measure the ellipticity $\epsilon = \epsilon_i + \gamma$ of all galaxies \Longrightarrow Noisy tracer of the weak lensing shear γ
- Compute summary statistics based on 2pt functions, e.g. the **power spectrum**
- Run an MCMC to recover a posterior on model parameters, using an analytic likelihood

$$p(\theta|x) \propto \underbrace{p(x|\theta)}_{\text{likelihood prior}} \underbrace{p(\theta)}_{\text{prior}}$$

- Measure the ellipticity $\epsilon=\epsilon_i+\gamma$ of all galaxies \Longrightarrow Noisy tracer of the weak lensing shear γ
- Compute summary statistics based on 2pt functions, e.g. the **power spectrum**
- Run an MCMC to recover a posterior on model parameters, using an analytic likelihood

$$p(\theta|x) \propto \underbrace{p(x|\theta)}_{\text{likelihood prior}} \underbrace{p(\theta)}_{\text{prior}}$$

(Hikage, ..., Lanusse, et al. 2018)

Main limitation: the need for an explicit likelihood

We can only compute the likelihood for simple summary statistics and on large scales

- Measure the ellipticity $\epsilon=\epsilon_i+\gamma$ of all galaxies \Longrightarrow Noisy tracer of the weak lensing shear γ
- Compute summary statistics based on 2pt functions, e.g. the **power spectrum**
- Run an MCMC to recover a posterior on model parameters, using an analytic likelihood

$$p(\theta|x) \propto \underbrace{p(x|\theta)}_{\text{likelihood prior}} \underbrace{p(\theta)}_{\text{prior}}$$

(Hikage, ..., Lanusse, et al. 2018)

Main limitation: the need for an explicit likelihood

We can only compute the likelihood for **simple summary statistics** and on **large scales**We are dismissing most of the information!

Can I use a Deep Learning to perform a proper Bayesian inference without likelihoods?

• I assume a forward model of the observations:

$$p(x) = p(x|\theta) p(\theta)$$

All I ask is the ability to sample from the model, to obtain $\mathcal{D} = \{x_i, \theta_i\}_{i \in \mathbb{N}}$

• I assume a forward model of the observations:

$$p(x) = p(x|\theta) p(\theta)$$

All I ask is the ability to sample from the model, to obtain $\mathcal{D} = \{x_i, \theta_i\}_{i \in \mathbb{N}}$

ullet I am going to assume $q_\phi(heta|x)$ a parametric conditional density

• I assume a forward model of the observations:

$$p(x) = p(x|\theta) p(\theta)$$

All I ask is the ability to sample from the model, to obtain $\mathcal{D} = \{x_i, \theta_i\}_{i \in \mathbb{N}}$

- ullet I am going to assume $q_\phi(heta|x)$ a parametric conditional density
- ullet Optimize the parameters ϕ of q_ϕ according to

$$\min_{\phi} \sum_i -\log q_{\phi}(heta_i|x_i)$$

In the limit of large number of samples and sufficient flexibility

$$q_{\phi^*}(\theta|x) pprox p(\theta|x)$$

• I assume a forward model of the observations:

$$p(x) = p(x|\theta) p(\theta)$$

All I ask is the ability to sample from the model, to obtain $\mathcal{D} = \{x_i, \theta_i\}_{i \in \mathbb{N}}$

- ullet I am going to assume $q_\phi(heta|x)$ a parametric conditional density
- ullet Optimize the parameters ϕ of q_ϕ according to

$$\min_{\phi} \sum_i -\log q_{\phi}(heta_i|x_i)$$

In the limit of large number of samples and sufficient flexibility

$$q_{\phi^*}(\theta|x) pprox p(\theta|x)$$

 \Longrightarrow One can asymptotically recover the posterior by optimizing a parametric estimator over the Bayesian joint distribution

• I assume a forward model of the observations:

$$p(x) = p(x|\theta) p(\theta)$$

All I ask is the ability to sample from the model, to obtain $\mathcal{D} = \{x_i, \theta_i\}_{i \in \mathbb{N}}$

- ullet I am going to assume $q_\phi(heta|x)$ a parametric conditional density
- ullet Optimize the parameters ϕ of q_ϕ according to

$$\min_{\phi} \sum_i -\log q_{\phi}(heta_i|x_i)$$

In the limit of large number of samples and sufficient flexibility

$$q_{\phi^*}(\theta|x) \approx p(\theta|x)$$

⇒ One can asymptotically recover the posterior by optimizing a Deep Neural Network over a simulated training set

Neural Density Estimation

• Mixture Density Networks (MDN)

$$p(\theta|x) = \prod_{i} \pi_i(x) \mathcal{N}(\mu_i(x), \ \sigma_i(x))$$

DELFI method (Alsing et al. 2018) based on Papamakarios & Murray (2016)

Bishop (1994)

Neural Density Estimation

Bishop (1994)

Mixture Density Networks (MDN)

$$p(\theta|x) = \prod_{i} \pi_{i}(x) \mathcal{N}(\mu_{i}(x), \sigma_{i}(x))$$

DELFI method (Alsing et al. 2018) based on Papamakarios & Murray (2016)

• Flourishing Machine Learning literature on density estimators

deep residual network for amortized inference

• Deep Residual Network with mixture density output

deep residual network for amortized inference

- Deep Residual Network with mixture density output
- Training on raw weak lensing maps simulated for different cosmologies

deep residual network for amortized inference

(Lanusse & Lin, in prep.)

deep residual network for amortized inference

(Lanusse & Lin, in prep.)

> Completely automated end-to-end inference methodology

Variational Mutual Information Maximization

 $I(y;\theta)$

Variational Mutual Information Maximization

$$I(y; \theta) = \mathbb{E}_{(y,\theta)}[\log p(\theta \mid y)] + H(\Theta)$$

Variational Mutual Information Maximization

$$I(y; \theta) = \mathbb{E}_{(y,\theta)} [\log p(\theta \mid y)] + H(\Theta)$$

 $\geq \mathbb{E}_{(y,\theta)} [\log q_{\phi}(\theta \mid y)] + H(\Theta)$

Variational Mutual Information Maximization

$$I(y; \theta) = \mathbb{E}_{(y,\theta)}[\log p(\theta \mid y)] + H(\Theta)$$

 Not derived from Fisher information around a fiducial value, asymptotically optimal over the entire parameter space

Variational Mutual Information Maximization

$$I(y; \theta) = \mathbb{E}_{(y,\theta)}[\log p(\theta \mid y)] + H(\Theta)$$

- Not derived from Fisher information around a fiducial value, asymptotically optimal over the entire parameter space
- Comes for free by training a deep MDN with a bottleneck
 The learned statistics can then be reused with different Likelihood-Free techniques

takeaway message

Deep Learning For Cosmological Inference

- This is part of the broader class of Likelihood-Free Inference methods
 - Shifts the physics from signal modeling and statistics extraction to simulation

 \Longrightarrow Will be essential to maximize the scientific return of Stage IV surveys.

Conclusion

conclusion

What can deep learning do for cosmology?

- Open new and powerful ways to look at the data
 - Image detection for finding rare astrophysical objects

conclusion

What can deep learning do for cosmology?

- Open new and powerful ways to look at the data
 - Image detection for finding rare astrophysical objects
- Data driven way of complementing our physical models
 - Modeling galaxy properties in numerical simulations

conclusion

What can deep learning do for cosmology?

- Open new and powerful ways to look at the data
 - Image detection for finding rare astrophysical objects
- Data driven way of complementing our physical models
 - Modeling galaxy properties in numerical simulations
- New strategies for inference for increasingly complex surveys

