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the Large Synoptic Survey Telescope

LSST in a few numbers

- 1000 images each night, each one is 3.2 GB and 40 full moons

=⇒ 15 TB/night for 10 years

- Covers 18,000 square degrees (40% of the sky)

- Tens of billions of objects, each one observed ∼ 1000 times
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the challenge for modern surveys

=⇒ Modern surveys will provide large volumes of high quality data

A Blessing

• Unprecedented statistical power

• Great potential for new discoveries

A Curse

• Existing methods are reaching their limits at every

step of the science analysis

• Control of systematic uncertainties becomes

paramount

LSST forecast on dark energy parameters
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=⇒ Dire need for novel analysis techniques to fully realize the potential of modern surveys.
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Outline of this talk

1. Deep residual networks for the detection of gravitational lenses

2. Graph Convolutional Networks for modelling galaxy properties

3. Towards a New Inference Paradigm with Deep Learning

4. Conclusion
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Deep residual networks for the

detection of gravitational lenses



Galaxy-Galaxy Strong Lensing
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example of application: gravitational time delays

∆tij =
1 + zL

c

DL DS

DLS︸ ︷︷ ︸
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the problem: finding strong lenses
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automated lens searches: RingFinder (Gavazzi et al. 2014)

gri composite g − αi detected areas HST images

Visual inspection time required: ∼ 30 person-minutes / deg2
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extrapolation to future surveys

CFHTLS DES LSST
100

101

102

103

104

105
number of strong lenses

Gavazzi et al. (2014), Collett (2015)

=⇒ LSST would require an estimated 104 man-hours.
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How can we robustly detect these rare objects without

needing an army of grad students ?
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CMU DeepLens: deep residual learning for strong lens finding

Lanusse et al. (2017)

• Deep ResNet (46 layers) with pre-activated bottleneck residual units

• Training on simulated LSST lenses:

• Classification of 45x45 images in 350 µs

=⇒ 9 hours to classify a sample of 108 lens candidates on single GPU
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Euclid strong lens finding challenge
Metcalf, . . ., Lanusse, et al. (2018)

Ground based simulations Space based simulations 11



Euclid strong lens finding challenge
Metcalf, . . ., Lanusse, et al. (2018)

• CMU DeepLens wins over 24 other methods (including other CNN methods) in space and

ground challenge.

• Significantly outperforms human classification accuracy.
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takeaway message

Deep Learning for Low Level Processing

• An example of Deep Learning allowing us to handle the volume and data rate at the

image level

• Our automated lens finder is faster and more reliable than human volunteers.

• Larger and more robust samples for the science analysis.

Many other applications of classifications, for instance for time series classification:

- Bayesian Recurrent Neural Networks for supernovae detection

(Moller & De Boissiere, 2019), arXiv:1901.06384
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Graph Convolutional Networks

for modelling galaxy properties



weak gravitational lensing and the intrinsic alignment of galaxies

ε = εi + γ with

Impact on dark energy constraints

Kirk et al. (2015)

< εε′ >︸ ︷︷ ︸
measured

= < γγ′ >︸ ︷︷ ︸
cosmological signal

+ < εiε
′
i >︸ ︷︷ ︸

II

+ < γε′i > + < εiγ
′ >︸ ︷︷ ︸

GI
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why does this happen ?

Kiessling et al. (2015)

• Tidal interactions with local gravitational potential

=⇒ Can be analytically modeled on large scales

• Much more complicated in details, impacted by baryonic physics

=⇒ Study requires expensive hydrodynamical simulations
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why galaxy alignments are complicated

15



How to produce mock galaxy catalogs on large cosmological

volumes with realistic alignments ?
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inpainting intrinsic aligments on N-body simulations

Massive Black II (Khandai et al, 2015)

Dark Matter Only

Image credit: Tenneti et al. (2015)

p (~a3D | xDM ,MDM , . . .)

=⇒ How to model and sample from this conditional distribution ?
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inpainting intrinsic aligments on N-body simulations
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MB II simulation, animation credit: Kim Albrecht



Graph Convolutional Networks (Kipf & Welling, 2017)

Computation of the activation yi for a

node i in the graph:

yi = b + W0hi︸ ︷︷ ︸
self-connection

+
∑
j∈Ni

wi,jW1hj︸ ︷︷ ︸
average over neighbors

• Approximation of a spectral convolution on the graph, restricted to first neighbors

=⇒ Only requires one multiplication by the sparse graph adjacency matrix

• To preserve information about the respective 3D positions of the nodes, we introduce a

directional graph convolution:

yi = b + W0hi +
M∑

m=1

∑
j∈Ni

qm(xi , xj) wi,j Wmhj

18
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Wasserstein Generative Adversarial Networks on graphs

• Simple extension to the graph of a standard Wasserstein GAN, using our graph

convolutions

19



proof of concept on MNIST
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application to intrinsic alignments

• Successfully samples 3D galaxy orientations with the correct alignment, just from dark

matter information

21



takeaway message

Deep Learning for Improving Cosmological Simulation

• Exciting new framework to empirically populate large volume simulations with realistic

galaxy populations

• Will add to the realism of cosmological simulations and allow us to test IA mitigation

• Being implemented as part of the simulation pipeline for the LSST DESC Second Data

Challenge

22
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Towards a New Inference

Paradigm with Deep Learning



traditional cosmological inference

(Alonso et al. 2018)

• Measure the ellipticity ε = εi + γ of all galaxies

=⇒ Noisy tracer of the weak lensing shear γ

• Compute summary statistics based on 2pt functions,

e.g. the power spectrum

• Run an MCMC to recover a posterior on model

parameters, using an analytic likelihood

p(θ|x) ∝ p(x |θ)︸ ︷︷ ︸
likelihood

p(θ)︸︷︷︸
prior

Main limitation: the need for an explicit likelihood

We can only compute the likelihood for simple summary statistics and on large scales

=⇒ We are dismissing most of the information!
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Can I use a Deep Learning to perform a proper Bayesian

inference without likelihoods?

23



let us rephrase the question

• I assume a forward model of the observations:

p(x) = p(x |θ) p(θ)

All I ask is the ability to sample from the model, to obtain D = {xi , θi}i∈N

• I am going to assume qφ(θ|x) a parametric conditional density

• Optimize the parameters φ of qφ according to

min
φ

∑
i

− log qφ(θi |xi )

In the limit of large number of samples and sufficient flexibility

qφ∗(θ|x) ≈ p(θ|x)

24
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qφ∗(θ|x) ≈ p(θ|x)

=⇒ One can asymptotically recover the posterior by optimizing a Deep Neural Network over a
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Neural Density Estimation

Bishop (1994)

• Mixture Density Networks (MDN)

p(θ|x) =
∏
i

πi (x) N (µi (x), σi (x))

DELFI method (Alsing et al. 2018) based on Papamakarios &

Murray (2016)

• Flourishing Machine Learning literature on density estimators

GLOW, (Kingma & Dhariwal, 2018)

25
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deep residual network for amortized inference

(Lanusse & Lin, in prep.)

• Deep Residual Network with mixture density output

• Training on raw weak lensing maps simulated for different cosmologies

• Parameter constraints and posterior validation by Simulation-Based

Calibration (Talts et al. 2018):

=⇒ Completely automated end-to-end inference methodology

26
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wait.... what about summary statistics?

Variational Mutual Information Maximization

I (y ; θ) = E(y ,θ)[ log p(θ | y) ] + H(Θ)

≥ E(y ,θ)[ log qφ(θ | y) ] + H(Θ)

• Not derived from Fisher information around a fiducial value, asymptotically optimal over

the entire parameter space

• Comes for free by training a deep MDN with a bottleneck

=⇒ The learned statistics can then be reused with different Likelihood-Free techniques

27
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takeaway message

Deep Learning For Cosmological Inference

• This is part of the broader class of Likelihood-Free Inference methods

- Shifts the physics from signal modeling and statistics extraction to simulation

=⇒ Will be essential to maximize the scientific return of Stage IV surveys.
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Conclusion



conclusion

What can deep learning do for cosmology ?

• Open new and powerful ways to look at the data

• Image detection for finding rare astrophysical objects

• Data driven way of complementing our physical models

• Modeling galaxy properties in numerical simulations

• New strategies for inference for increasingly complex surveys
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Thank you !
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