Computation issues in Monte Carlo event generation

Andy Buckley, University of Glasgow
ACAT 2019
Saas Fee, 15 March 2019
LHC event generation

Evgen is simulation of the fundamental pp process

Focus on fully differential “SHG” codes, with dressing of hard matrix element by pQCD & pheno

In the LHC’s first decade, from tiny CPU cost to very expensive! cf. step-change in formal accuracy. *While others simplified, MC → ~factorial explosion!*

Many issues in summary from HSF MC workshop: https://indico.cern.ch/event/751693/timetable/

Disclaimer: This is a top-down view: plenty of more “deep” QCD experts here. Many thanks to Stefan Hoeche, Holger Schulz, Keith Hamilton, Marek Schoenherr, Frank Siegert, Josh Macfayden, …
Evgen cost, present and future

Cf. 2000, only leading-order shower/hadronisation MC available! (Alpgen, MadEvent, aMC@NLO in 2002, Sherpa & Powheg later). ~Trivial…

Big difference in ATLAS vs CMS time — reflects large use of CMS LO BSM. For core SM, both 15-20%!!

HL-LHC predictions very concerning: evgen leads CPU shortfall by x2. How come? Can’t have HL-LHC physics impact dominated by MC stats systematics!!

(Josh Macfayden)
Typical modern SHG generator structure:

Factorised strategy for higher-order processes: generate process lib, use dedicated (MPI) PS integration run to optimise,
Event generation core: ME and phase space

MC generation rooted in integration and sampling of ME & phase space:

\[
d\sigma \sim d\sigma_{\text{hard}}(Q) \times \text{PS}(Q \rightarrow \mu) \times \text{Had}(\mu \rightarrow \Lambda) \times ...
\]

NB. factorisation is convenience, not reality!

\[
d\sigma_{\text{hard}}(p_1, ..., p_n|Q) \sim |\mathcal{M}(p_1, ..., p_n)|^2 d\text{PSP}(p_1, ..., p_n|Q)
\]

\[
d\sigma = d\sigma^{\text{LO}} + \alpha_S(Q) d\sigma^{\text{NLO}}(Q) + \alpha_S^2(Q) d\sigma^{\text{NNLO}}(Q) + ...
\]

Efficient MC generation requires efficient sampling of ME over partonic phase space. Efficient = low rejection rates / high weights. Flatten integrand via change of variables: exploit physical singularities, e.g. multi-channel (MadEvent), VEGAS

Modern strategies: parallel run → gridpacks, evgen embarassingly parallel
Phase space and loop integration

PS: $\int d^4 p_1 \ldots d^4 p_N |\mathcal{M}(\{p_i\})|^2 \delta p_1^2 \ldots \delta p_N^2 \delta^4 (p_1 + \ldots + p_N)$

Loop: $\int d^d k_1 \ldots d^d k_N \frac{N(\{k_i\})}{\Pi_i^N a D_i}$

Complexity of ME+PDF singularity structure makes both hard:

Loop UV and IR singularities \rightarrow large variance, poor convergence \rightarrow *pre-generate*

PS is the major scaling issue for higher order MC production, both in legs & loops:

(Ways beyond limitations of current adaptive sampling?)

<table>
<thead>
<tr>
<th>(Valentin Hirschi — see talk)</th>
<th>Tree-level</th>
<th>One-loop</th>
</tr>
</thead>
<tbody>
<tr>
<td>MG5aMC</td>
<td>7 μs $\times 10^2$</td>
<td>0.6 ms</td>
</tr>
<tr>
<td>MadLoop</td>
<td>35 μs $\times 10^3$</td>
<td>38 ms</td>
</tr>
<tr>
<td>220 μs $\times 10^4$</td>
<td>1200 ms</td>
<td></td>
</tr>
</tbody>
</table>
ML-assisted integration

Param transform equivalent to binning phase space for equal probability per bin. VEGAS = 1D projection, FOAM ~ 5D:

Bendavid [arXiv:1707.00028] builds on ideas for BDT as multidimension reweighter, extends with DNN:

<table>
<thead>
<tr>
<th>Algorithm</th>
<th># of Func. Evals</th>
<th>$\sigma_W/\langle W \rangle$</th>
<th>σ_I/I (2e6 add. evts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VEGAS</td>
<td>300,000</td>
<td>2.820</td>
<td>$\pm 2.0 \times 10^{-3}$</td>
</tr>
<tr>
<td>Foam</td>
<td>3,855,289</td>
<td>0.319</td>
<td>$\pm 2.3 \times 10^{-4}$</td>
</tr>
<tr>
<td>Generative BDT</td>
<td>300,000</td>
<td>0.082</td>
<td>$\pm 5.8 \times 10^{-5}$</td>
</tr>
<tr>
<td>Generative BDT (staged)</td>
<td>300,000</td>
<td>0.077</td>
<td>$\pm 5.4 \times 10^{-5}$</td>
</tr>
<tr>
<td>Generative DNN</td>
<td>294,912</td>
<td>0.083</td>
<td>$\pm 5.9 \times 10^{-5}$</td>
</tr>
<tr>
<td>Generative DNN (staged)</td>
<td>294,912</td>
<td>0.030</td>
<td>$\pm 2.1 \times 10^{-5}$</td>
</tr>
</tbody>
</table>

Exciting possibility for integration with ME generators… via ML workflows?
Matching and merging

Last 10-20 years = avoiding double-counting, in a theoretically consistent way

ME/parton shower connection: $N+1$ ME sample overlaps in phase space with $N+PS$. Slice phase-space between MEs and PS emissions to avoid conflict → new freedoms: merging scale, Sudakov ambiguities

Shower needed in softer resummation regime. Preserve logarithmic accuracy of PS by e.g. cluster-based scale recalc: CKKW, MiNLO.

(Keith Hamilton)
Potential ML gains in matching

Novel use of neural nets in arXiv:1805.09855, to fit unknown higher-order resummation terms.

Calculation is NLO-matched single-top + jet (STJ) in the POWHEG-MiNLO formalism: enhance fixed-order calculation with matched NLL Sudakov form factor:

\[d\sigma_M = \Delta(y_{12}) \left[d\sigma_{NLO}^{STJ} - \Delta(y_{12}) |_{\bar{\alpha}_S} d\sigma_{LO}^{STJ} \right] \]

But this spoils the NLO accuracy of ST! Fix at NNLL...

Fit \(A_2 \) with NN ML-based tuning of degrees of freedom; test universality at 8 TeV!

\[
\ln \delta \Delta(y_{12}) = -2 \int_{y_{12}}^{Q^2_{bt}} \frac{dq^2}{q^2} \bar{\alpha}_S A_2(\Phi) \ln \frac{Q^2_{bt}}{q^2} \\
\mathcal{L} = \sum_{i=1}^{N_{bins}} \left[\sum_{j=1}^{N} w_{i,j}^{ST} - \sum_{k=1}^{N'} w_{i,k}^{STJ} \right] A_2(\Phi_i) G_2(\lambda) \]
CPU implications of multileg match/merge

Sherpa LO/NLO merging performance:

LO merging using COMIX

<table>
<thead>
<tr>
<th>Process W^{-+}</th>
<th>0j</th>
<th>$\leq 1j$</th>
<th>$\leq 2j$</th>
<th>$\leq 3j$</th>
<th>$\leq 4j$</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAM Usage</td>
<td>39 MB</td>
<td>44 MB</td>
<td>49 MB</td>
<td>64 MB</td>
<td>173 MB</td>
</tr>
<tr>
<td>Initialization time</td>
<td>$<1s$</td>
<td>$<1s$</td>
<td>3s</td>
<td>22s</td>
<td>7m 7s</td>
</tr>
<tr>
<td>Startup time</td>
<td>$<1s$</td>
<td>$<1s$</td>
<td>$<1s$</td>
<td>$<1s$</td>
<td>2s</td>
</tr>
<tr>
<td>Integration time</td>
<td>25s</td>
<td>3m 19s</td>
<td>34m 8s</td>
<td>3h 12m</td>
<td>2d 17h</td>
</tr>
<tr>
<td>10k weighted evts</td>
<td>3m 24s</td>
<td>3m 51s</td>
<td>4m 2s</td>
<td>4m 4s</td>
<td>4m 21s</td>
</tr>
<tr>
<td>10k unweighted evts</td>
<td>3m 20s</td>
<td>4m 39s</td>
<td>11m 47s</td>
<td>35m 54s</td>
<td>4h 3m</td>
</tr>
</tbody>
</table>

NLO merging using AMEGIC+BLACKHAT/COMIX (S/H-events)

<table>
<thead>
<tr>
<th>Process W^{-+}</th>
<th>0j</th>
<th>$\leq 1j$</th>
<th>$\leq 2j$</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAM Usage</td>
<td>51 MB</td>
<td>112 MB</td>
<td>572 MB</td>
</tr>
<tr>
<td>Initialization time</td>
<td>1s</td>
<td>20s</td>
<td>4m 6s</td>
</tr>
<tr>
<td>Startup time</td>
<td>$<1s$</td>
<td>2s</td>
<td>18s</td>
</tr>
<tr>
<td>Integration time</td>
<td>20m 48s</td>
<td>4h 45m</td>
<td>5d 23h</td>
</tr>
<tr>
<td>10k weighted evts</td>
<td>3m 58s</td>
<td>4m 38s</td>
<td>6m 48s</td>
</tr>
<tr>
<td>10k unweighted evts</td>
<td>4m 14s</td>
<td>4h 8m</td>
<td>24h 54m</td>
</tr>
</tbody>
</table>

Sherpa match/merge with CKKW: clustering to determine merging scale dominates CPU budget; improve x4 via same approx as MG5
Origins of match/merge CPU (LO)

W + < 4j:

Sherpa weighted

- 0j
- parton shower
- 1j
- hadron decays + QED
- 2j
- multiple interactions
- 3j
- matrix element!

Sherpa unweighted

- 0j
- matrix elements & CKKW clustering
- 1j
- 2j
- 3j

(Marek Schoenherr, Stefan Hoeche)
Origins of match/merge CPU (NLO)

W + < 2j:

- Sherpa weighted
- Sherpa unweighted

NLO matrix elements & matching (CKKW)

(Marek Schoenherr, Stefan Hoeche)
Unweighting — the symptom

Origin of weights in shortcomings of phase-space proposal density functions: weight variances explode as multiplicities increase.

Problems from discovered “new max” → spikes, and -ve weights

MC@NLO formalism ~ 25% -ve weight fraction ⇒ factor 2 in stat loss
Unweighting — more phase-space ML?

Unweighting efficiency relates to the inefficiency of sampling the phase space in the first place: perfect integration proposals would give uniform weights, with no wastage. Importance sampling proposal density too complicated?

Krause & Siegert MSc study, 2015: parametrise $Z+jjgg$ weight function in $3n$ features

Try 3 bases, with “LHC physics” momenta best.

750x speed-up, but x3 weight mismodelling
Generator systematics

Perturbative QCD \rightarrow truncation of perturbative expansion in α_s. Unphysical dependence on scale μ_R — reduced but not eliminated by higher orders.

Also PDF uncertainties: nucleon momentum structure, with fit errors. Trivial to reweight at LO, complex at NLO+.

Uncertainties as weights or gen-specific coeffs

(Relative) systematics may be easier to learn than differential cross-sections. Prelim SUSY total-xsec DGP interpolation incl systematics [Raklev, v.d.Abeele]:

\[
\text{log}_{10} \sigma / \sigma_0, \sigma_0 = 1 \text{ fb}
\]

\[
\begin{align*}
\text{m}_t &= 500 \\
\text{m_g [GeV]} &\quad 0 \quad 500 \quad 1000 \quad 2000 \quad 2500 \quad 3000
\end{align*}
\]

\[
\begin{align*}
\text{Prospino 2.1} &\quad 2} \times \text{reg. error} &\quad \text{Scale error} &\quad \text{PDF error} &\quad \alpha_s \text{ error} &\quad \text{Scale error}
\end{align*}
\]
Modern compute architectures

Many ~2000-2010 assumptions being challenged: for LHC production purposes, which dominate resource use, single-core Grid assumed. ATLAS → “on-the-fly” for Run2!

All change, at least for MEs: availability of (US) HPC facilities… push on MPI, vectorisation GPU and similar architectures will dominate. Can evgen ME production use this? MG5 LO started ~2009, all SM in 2013. Little interest? Automation via ML workflows?
Why is ATLAS MC more expensive than CMS?

Numbers aren’t quite fair: CMS 1% vs ATLAS 20%... on a very different balance of samples. But still:

Sherpa monolithic mode vs MadGraph factorised. Convenient, but at high multiplicities, runs ~as slow as the (lowest rate) highest multiplicity! *See next slide...*

NB. Not all about MEs: flavour *filtering* is also costly. Need to account for all sources of b and c Reuse possible? Multiple streams? In-MC hooks?
Making Sherpa HPC-friendly

Factorise Sherpa mode parton multiplicities

Split to HPC-friendly new ME interchange format based on HDF5 vs LHE. Incl some Sherpa-specifics

LO ME scales worse than shower/matching, etc. — ratio plateaus for > 3 jets. Hybrid gen strategy: use HPC resources → high-mult MEs?

From zero to 8-jet analysis with 100M events in 25 mins!! Also viable on smaller scale concurrency?
Generator tuning, too

ME and MEPS matching is the sexy stuff!

Exclusive event generation is useless without “dirty details”: from partons to hadrons, hadronisation, MPI...

These models have tenuous physical underpinning: need tuning to data (cf. PDFs!)

Main tuning machinery is Professor interpolation fitter: “approximate computation” but just polynomials!

Recent extensions: portfolio opt, Pade rationals, NNs. Added value?
Low-hanging fruit?

As well as high-tech solutions, pragmatism helps: *how little can we get away with?*

Two modes of MC usage: theory-test, and “data fitting”. Often just need the latter. **Formal precision != accuracy!**
Shower “flexibility” sometimes useful…

(Partonic) event-sharing: commonly accessible repository of matrix-element event samples between expts (and pheno), allowing different showers & variations
Sociology

Have to mention the social factors: perverse incentives lurk in the background!

MC developers are theorists. Technical evgen logistics deeply immersed, but incompatible with theory funding and career paths. On HSF radar: Experiments to supply MC tech effort directly?

“Other” programs in the HEP MC ecosystem also performance critical: notably LHAPDF parton densities. Re-engineered 2014 with speed gains in some use-modes… but unfunded & ~dormant
Summary

MC event generation has undergone a sea-change during LHC 1,2

Huge leaps in formal accuracy of fully exclusive predictions: (N)NLO+PS
But also huge leaps in CPU demands!

Not yet a super-active area for innovative data-sci work! Familiarity, reward, ...

⇒ Main MC/experiment interactions on physics, not tech
⇒ Requires expertise in “both worlds”

Experiments also need to think hard about what they really need.
Approximate methods may be more appropriate, and ML → better approximations