

Kazuhiro Terao & Laura Domine SLAC National Accelerator Lab. ACAT @ Saas-Fee (11-15 Mar. 2019)

Outline:

- Neutrino detectors
- Machine learning applications
- Toward 3D ML-based data reconstruction

Me: Neutrino Physicist

- Neutrinos?
 - One of least understood elementary particles

Me: Neutrino Physicist

Neutrinos?

- Neutrinos?

 One of least understood elementary partitles

 from our Sine out of the sine out
- from our Sun 400 trillion neutrinos pass your body every second
 - → Your body generates ~340 million neutrinos a day
- They come from everywhere

EPJ H37 (2012) 3:515-565 Flux (cm⁻² s⁻¹ sr⁻¹ MeV⁻¹) 10²⁰ 10¹⁶ 10⁸ 10⁴ **Big Bang SuperNova** Cosmological v Solar v Supernova burst (1987A) Reactor anti-v **Atmospheric** Sun Earth Background from old supernovae Terrestrial anti-v 10^{-8} Atmospheric v 10-16 v from AGN Accelerator **Good Stuff** Reactor Cosmogenic 10-24 10^{-3} 1012 1015 10^{3} 106 10^{9} 1018 MeV PeV Neutrino energy

Early days neutrino detection

Cd-doped water 0.4 ton, 100 PMTs (1956)

Inverse Beta Decay (IBD) $v_e + p \rightarrow e^+ + n$ by Reines & Cowan (Nobel Prize 1995)

First neutrino detection

Early days particle imaging

5ms of data at the NOvA Far Detector Each pixel is one hit cell Color shows charge digitized from the light

Need for advanced algorithms for analyzing high resolution data with complex topologies. (goal: maximize physics output)

NOvA - FNAL E929

Run: 18975 / 43 Event: 628855 / SNEWSBeatSlow UTC Mon Feb 23, 2015 14:30:1.383526016 Several hundred

μBooNE

Liquid Argon Time Projection Chamber

- High resolution photograph of charged particle trajectories
- Calorimetric measurement + scalability to a large mass

2015

Topological shape difference is a major distinction for "shower" particles

Trajectory ends
are distinct, and
useful for seeding
particle clustering
and trajectory fitting

75 cm

Many, local kinks
caused by Multiple
Coulomb Scattering
process can be used for
momentum estimation

75 cm

Small branches on muon-like trajectories are knocked-off electrons, useful key for the direction

Energy deposition patterns (dE/dX) vary with particle mass & momentum, useful for analysis

Highly ionizing proton

75 cm

Find A Cat Machine Learning in Neutrino Physics

How to write an algorithm to identify a cat?

... very hard task ...

```
      16
      08
      67
      15
      83
      09

      37
      52
      77
      23
      22
      74

      35
      42
      48
      72
      85
      27

      68
      36
      43
      54
      21
      33

      79
      60
      10
      25
      54
      71

      18
      55
      38
      73
      50
      47
```

Find A Cat Machine Learning in Neutrino Physics

Development Workflow for non-ML reconstruction

1. Write an algorithm based on physics principles

A cat = collection of certain shapes

Find A Cat

Machine Learning in Neutrino Physics

Development Workflow for non-ML reconstruction

- 1. Write an algorithm based on physics principles
- 2. Run on simulation and data samples
- 3. Observe failure cases, implement fixes/heuristics
- 4. Iterate over 2 & 3 till a satisfactory level is achieved
- 5. Chain multiple algorithms as one algorithm, repeat 2, 3, and 4.

→ "Cat" algorithm

A cat = collection of certain shapes

Find A Cat Machine Learning in Neutrino Physics

SLAC

Development Workflow for non-ML reconstruction

- 1. Write an algorithm based on physics principles
- 2. Run on simulation and data samples
- 3. Observe failure cases, implement fixes/heuristics
- 4. Iterate over 2 & 3 till a satisfactory level is achieved
- 5. Chain multiple algorithms as one algorithm, repeat 2, 3, and 4.

Machine Learning

- "Learn patterns from data"
 - automation of steps 2, 3, and 4
- "Chain algorithms & optimize"
 - step 5 addressed by design

CNN for "Image Classification" Machine Learning in Neutrino Physics

Convolutional Neural Networks (CNNs)

CNN for "Image Classification" Machine Learning in Neutrino Physics

WHAT is WHERE in an image? Machine Learning in Neutrino Physics

Image Context Detection

WHAT is WHERE and HOW in an image? Machine Learning in Neutrino Physics

SLAC

Interpretation of Contexts' Correlation

girl in pink dress is jumping in air."

Beyond Image Classification Machine Learning in Neutrino Physics

Object Detection for Neutrino Finding (MicroBooNE LArTPC)

Task: propose a rectangular box (location & size) that contains neutrino interaction⁹

Beyond Image Classification Machine Learning in Neutrino Physics

SLAC

ML Technique @

LArTPC Detector

MicroBooNE

Semantic Segmentation

- Recently published ... arXiv:1808.07269
- Pixel-level object classification
 - Separation of EM-particle from other types
 - Key input information for particle clustering
- First time deep neural network validated on LArTPC data

Network Input

Network Output

Pixel-level Feature Information Machine Learning in Neutrino Physics

Pixel-level Feature Information Machine Learning in Neutrino Physics

SLAC

Localized features at the pixel-level are useful to inspect correlation of data features & algorithm responses

Pixel-level Feature Information Machine Learning in Neutrino Physics

Score

Score

Score

Score

Toward "Reconstruction Chain" Machine Learning in Neutrino Physics

Laura Domine (GS)

Presented @ Neutrino2018

Competition top-10 finalist!

Multi-Task Network Cascade

- Chain of Segmentation + Detection
 - Feature points: "shower start" and "track edges"
 - Classify each pixel into "shower" vs. "track"
- Extension to 3D data

Toward "Reconstruction Chain" Machine Learning in Neutrino Physics

Multi-task DNN for Physics Reconstruction

Introduce physical feature extraction tasks (auxiliary targets) to bias the data transformation path to support producing a logical conclusion. Optimize the whole reconstruction chain.

Deep CNN for LARGE Detectors? (scalability) Machine Learning for Particle Image Analysis

SLAC

Data feature: generally sparse,

locally dense image, and very large

volume (1 E10-20 pixels)

Issues using standard CNNs

- **Inefficient** calculations ("zero" matrix elements)
- Prohibitive resource usage (memory, time)
- Degraded performance

... terrible scaling = garbage!

Deep CNN for LARGE Detectors? (scalability) Machine Learning for Particle Image Analysis

Got a solution:)

(right: 768³ volume)

Submanifold Sparse Conv. Net

Talk by Laura Domine (Thursday)

Great for LArTPC and other domains!

Type	HIP	MIP	Shower	Delta	Michel
Acc.	0.99	0.98	0.99	0.97	0.96

Deep CNN for LARGE Detectors? (scalability) Machine Learning for Particle Image Analysis

Michel Electron Reconstruction

- Run spatial DBscan for MIP & Michel pixels (separately)
- Keep only Michel clusters which edge touches with an edge of a MIP cluster

Toward Production Machine Learning for Particle Image Analysis

SLAC

Reproducible technique sharing is important...

- Submanifold Sparse Conv. Net for scalability
 - See <u>Laura's talk</u>, and our benchmark ... <u>arXiv: 1903.05663</u>
 - Open data sample: <u>DOI 10.17605/OSF.IO/VRUZP</u>
 - Software stuck: <u>Singularity</u> or <u>Docker</u> container
 - Implementation: github repo

Toward HPC: contact them if you want help!

- SSCN + Horovod + custom MPI for production
- Corey Adams (ANL)
 - KNL/GPU nodes @ ALCF
- Eric Church, Jan F Strube, Alexander R. Hagen (PNNL)
 - SummitDev Intel Power8, now moving onto Power9

Summary

Machine Learning for Particle Image Analysis

Experimental neutrino physics:

- Detector trend: particle imaging
 - LArTPC is the current frontier for imaging
- Many applications from computer vision
 - ML-based full data reconstruction being developed
 - Active but not mentioned: data/sim domain adaptation
- Next few years
 - Integration of ML-based reconstruction
 - Data/Simulation domain adaptations
 - Software stack development toward HPC

Thank you for listening

and

Thank YOU for organizing ACAT2019!

Back Up Slides

Machine Learning for Particle Image Analysis

How image classification works

Machine Learning for Particle Image Analysis

How image classification works

Intermediate Data Tensor (low-resolution, high-level features)

Machine Learning for Particle Image Analysis

How pixel segmentation works

- Combine "up-sampling" + convolutions
- Output: "learnable" interpolation filters

Machine Learning for Particle Image Analysis

How pixel segmentation works

- Combine "up-sampling" + convolutions
- Output: "learnable" interpolation filters

Concatenation recovers spatial resolution information

Machine Learning for Particle Image Analysis

SLAC

Concatenation recovers spatial resolution information

Relabeling study

Relabeled dataset = lonly primary ionization is labelled as Michel electrons

Train data	Regular		Relabeled	Relabeled + Weighting
Test data	Regular	Relabeled		
HIP	98.0%	98.1%	98.1%	99.3%
MIP	99.4%	99.2%	99.4%	98.1%
EM shower	99.4%	97.9%	99.2%	99.2%
Delta rays	85.7%	94.8%	96.0%	97.2%
Michel electrons	56.6%	94.4%	94.7%	95.7%

49

Number of pixels in candidate vs matched Michel cluster

200

ACAT 2019 L.Domine and K.Terao

800

600

Number of pixels in matched true Michel cluster

1000

Underclusteri

50

ng

Michel electrons energy spectrum reconstruction

Sample size	7105
Identificati on purity	98.8%
Identificati on efficiency	93.9%
Cluster efficiency	96.1%
Entertain online data!	d 97 pგბჯ ch y, next step is

Detectors

Detecting Neutrinos: BMB

BMB
We cannot observe neutrinos, but we can detect particles that come out of a neutrino interaction.

Evolution of Detectors

Cd-doped water 0.4 ton, 100 PMTs

Inverse Beta Decay (IBD) $\overline{\nu}_e + p \rightarrow e^+ + n$ by Reines & Cowan (Nobel Prize 1995)

First neutrino detection

Evolution of Detectors

Cd-doped water 0.4 ton, 100 PMTs (1956)

Birth of neutrino astrophysics!

KamiokaNDE Detector 3 kton ultra-pure water, 1000 20" PMTs (shared Nobel Prize 2002)

Evolution of Detectors

Cd-doped water 0.4 ton, 100 PMTs (1956)

Ultra-pure water 3 kton, 1000 PMTs (1983)

Discovery of vatmo oscillation!

Super-KamiokaNDE 50 kton ultra-pure water, 11000 PMTs (shared Nobel Prize 2015)

Evolution of Detectors

Cd-doped water 0.4 ton, 100 PMTs (1956)

Ultra-pure water 3 kton, 1000 PMTs (1983)

Ultra-pure water 50 kton, 11000 PMTs (1996)

Discovery of v_{solar} oscillation!

SNO
1 kton heavy-water Cherenkov,
9600 PMTs
(shared Nobel Prize 2015)

Evolution of Detectors

Cd-doped water 0.4 ton, 100 PMTs (1956)

Ultra-pure water 3 kton, 1000 PMTs (1983)

Ultra-pure water 50 kton, 11000 PMTs (1996)

Heavy water
1 kton, 9600 PMTs
(1999)

Reactor neutrino oscillation! (the solar model is right!)

KamLAND

1 kton liquid scintillator, 1900 PMTs

My first neutrino experiment

(undergraduate RA @ UC Berkeley)

Evolution of Detectors

Cd-doped water 0.4 ton, 100 PMTs (1956)

Ultra-pure water 3 kton, 1000 PMTs (1983)

Ultra-pure water 50 kton, 11000 PMTs (1996)

Heavy water 1 kton, 9600 PMTs (1999)

Liquid Scintillator 1 kton, 1900 PMTs (2002)

Gd-doped liquid scintillator RENO, Daya Bay, Double Chooz

"Near" & "Far" design 2 x 16 ton detectors with 400 PMTs each (Double Chooz)

My Ph.D thesis! (MIT)
"Last mixing
angle" θ₁₃
Experiments!

How can we do better?

Three important detector features for oscillation measurement

$$P(\nu_{\mu} \to \nu_{\rm e}) = \sin^2 2\theta \sin^2 \left(\frac{1.27 \Delta m^2 L}{E_{\nu}}\right)$$

Good Energy Resolution

Precise E_v reduce oscillation uncertainty

Large Mass (scalable)

"More" statistics to measure rare physics process

Particle ID Capability

Better v identification background rejection

Challenge

uBooNE

Interaction vertex can be anywhere in LAr, varying in size (cm ~ meters)

Cosmic Data: Run 6280 Event 6812 May 12th, 2016

Must identify event vertex + neutrino interaction topology (particle types)

Run 3469 Event 53223, October 21st, 2015

Cluster energy depositions for an accurate calorimetry

40 cm

Run 1153 Event 40. August 6th 2015 21:07

Deal with optical illusions in 2D projections + 3D pattern recognitions