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Machine Learning for
Particle Image Neutrino Detectors
at the HEP Intensity Frontier
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Outline:
● Neutrino detectors
● Machine learning applications
● Toward 3D ML-based data reconstruction
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Me: Neutrino Physicist
• Neutrinos?

- One of least understood elementary particles



Me: Neutrino Physicist
• Neutrinos?

- One of least understood elementary particles
- They are everywhere
‣ 400 trillion neutrinos pass your body every second
‣ Your body generates ~340 million neutrinos a day

- They come from everywhere

Sun Atmospheric Earth

ReactorAccelerator Good Stuff

EPJ H37 (2012) 3:515-565
Big Bang SuperNova AGN

10 38
 neutrinos/second

from our Sun



Inverse Beta Decay (IBD)
νe + p → e+ + n

by Reines & Cowan (Nobel Prize 1995)

First neutrino 
detection

Cd-doped water
0.4 ton, 100 PMTs

(1956)

Early days neutrino detection



νμ

Bubble Chamber
Analog photographs to record 
trajectory of charged particles

Early days particle imaging 







Need for advanced algorithms 
for analyzing high resolution 

data with complex topologies. 
(goal: maximize physics output)
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νμ

Bubble Chamber

Liquid Argon Time Projection Chamber
• High resolution photograph of charged particle trajectories
• Calorimetric measurement + scalability to a large mass

~mm/pixel spatial resolution
~MeV level sensitivity

MicroBooNE
~87 ton (school bus size)

Hi-Res Particle Imaging
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Topological shape 
difference is a major 
distinction for 
“shower” particles

Hi-Res Particle Imaging
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Trajectory ends 
are distinct, and 
useful for seeding 
particle clustering 
and trajectory fitting

Hi-Res Particle Imaging
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Many, local kinks  
caused by Multiple 
Coulomb Scattering 
process can be used for 
momentum estimation

Hi-Res Particle Imaging
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Small branches on 
muon-like trajectories are 
knocked-off electrons, useful 
key for the direction

Hi-Res Particle Imaging
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Highly ionizing 
proton

Hi-Res Particle Imaging

Energy deposition 
patterns (dE/dX) 
vary with particle 
mass & momentum, 
useful for analysis 
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Stopping 
particle

e- vs. γ
using dE/dX

Hi-Res Particle Imaging

Energy deposition 
patterns (dE/dX) 
vary with particle 
mass & momentum, 
useful for analysis 



100 cm
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Cosmic Data : Run 6280  Event 6812  May 12th, 2016
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Hi-Res Particle Imaging



18

100 cm

10
0

 c
m

Cosmic Data : Run 6280  Event 6812  May 12th, 2016

≃ 14 cm x 14 cm

≃ 200 cm

Interaction vertex can be anywhere 
in LAr, varying in size (cm ~ meters)

Hi-Res Particle Imaging
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Next Neutno Detectors?

3D imaging LA 
(on-going R&D)

Hi-Res Particle Imaging



Machine Learning and
Computer Vision
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Find A Cat
Machine Learning in Neutrino Physics

How to write an algorithm 
to identify a cat?

… very hard task ...
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1.  Write an algorithm based on physics principles

algorithm

collection of 
certain shapesA cat  =

(or, a neutrino)

Development Workflow for non-ML reconstruction

Find A Cat
Machine Learning in Neutrino Physics
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1.  Write an algorithm based on physics principles
2.  Run on simulation and data samples
3.  Observe failure cases, implement fixes/heuristics
4.  Iterate over 2 & 3 till a satisfactory level is achieved
5.  Chain multiple algorithms as one algorithm, repeat 2, 3, and 4.

Partial cat
(escaping the detector)

Stretching cat
(Nuclear FSI)

collection of 
certain shapesA cat  =

(or, a neutrino)

algorithm

Development Workflow for non-ML reconstruction

Find A Cat
Machine Learning in Neutrino Physics
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1.  Write an algorithm based on physics principles
2.  Run on simulation and data samples
3.  Observe failure cases, implement fixes/heuristics
4.  Iterate over 2 & 3 till a satisfactory level is achieved
5.  Chain multiple algorithms as one algorithm, repeat 2, 3, and 4.

Machine Learning
• “Learn patterns from data” 

- automation of steps 2, 3, and 4

• “Chain algorithms & optimize” 
- step 5 addressed by design

algorithm

Development Workflow for non-ML reconstruction

Find A Cat
Machine Learning in Neutrino Physics



CNN for “Image Classification”
Machine Learning in Neutrino Physics
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CNN for “Image Classification”
Machine Learning in Neutrino Physics

NOvA Neutrino
Event Topology

NEXT
Signal vs. Background

MicroBooNE
Signal/Background

e γ μ π

LArLIAT
Signal vs. Background
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Image Context Detection

WHAT is WHERE in an image?
Machine Learning in Neutrino Physics
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WHAT is WHERE and HOW in an image?
Machine Learning in Neutrino Physics
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MicroBooNE
Simulation + Data Overlay

νμ

JINST 12 P03011 (2017)
arXiv:1611.05531

Object Detection
for Neutrino Finding
(MicroBooNE LArTPC)

Task: propose a rectangular 
box (location & size) that 
contains neutrino interaction

Beyond Image Classification
Machine Learning in Neutrino Physics
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https://iopscience.iop.org/article/10.1088/1748-0221/12/03/P03011/meta
https://arxiv.org/abs/1611.05531


ML Technique @ 
MicroBooNE

LArTPC Detector

Beyond Image Classification
Machine Learning in Neutrino Physics
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Pixel-level Feature Information
Machine Learning in Neutrino Physics
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Localized features at 
the pixel-level are useful 
to inspect correlation 

of data features & 
algorithm responses

Pixel-level Feature Information
Machine Learning in Neutrino Physics
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Localized features at 
the pixel-level are useful 
to inspect correlation 

of data features & 
algorithm responses

Pixel-level Feature Information
Machine Learning in Neutrino Physics
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ML-based
3D Data
Reconstruction

34



35

1000

100

10

10 2 3 4 5
Pixel distance between the target truth 
point to the closest proposed point

3mm/pixel
resolution

Laura Domine (GS)
Presented @ Neutrino2018

Competition top-10 finalist!
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Multi-Task Network Cascade

• Chain of Segmentation + Detection
- Feature points: “shower start” and “track edges”
- Classify each pixel into “shower” vs. “ track”

• Extension to 3D data
- Change in tensor dimensions, identical algorithms

Toward “Reconstruction Chain”
Machine Learning in Neutrino Physics
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Outputs from 
the individual 

networks

Point
Prediction

Pixel
Feature

Particle
Clustering

Input Data High-level
Output

p

pepi

Multi-task DNN for Physics Reconstruction
Introduce physical feature extraction tasks (auxiliary targets) 
to bias the data transformation path to support producing a 
logical conclusion. Optimize the whole reconstruction chain.

Multi-task
DNNs

Toward “Reconstruction Chain”
Machine Learning in Neutrino Physics
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Data feature: generally sparse, 
locally dense image, and very large 
volume (1 E10-20 pixels)

Issues using standard CNNs

● Inefficient calculations 
(“zero” matrix elements) 

● Prohibitive resource 
usage (memory, time)

● Degraded performance

… terrible scaling = garbage!

Deep CNN for LARGE Detectors? (scalability)
Machine Learning for Particle Image Analysis
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Data feature: generally sparse, 
locally dense image, and very large 
volume (1 E10-20 pixels)

Got a solution :)
(right: 768^3 volume)

Submanifold Sparse Conv. Net
Talk by Laura Domine (Thursday)
Great for LArTPC and other domains!

Type HIP MIP Shower Delta Michel

Acc. 0.99 0.98 0.99 0.97 0.96

Deep CNN for LARGE Detectors? (scalability)
Machine Learning for Particle Image Analysis

https://indico.cern.ch/event/708041/contributions/3269747/attachments/1812175/2960103/ACAT_2019_Laura_Domine.pdf
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Michel Electron Reconstruction

MIP
HIP
EM Shower
Delta Rays
Michel

● Run spatial DBscan for MIP & 
Michel pixels (separately)

● Keep only Michel clusters 
which edge touches with an 
edge of a MIP cluster 

Preliminary
● ID efficiency = 93.9%
● ID purity = 98.8%

MicroBooNE Michel electron paper reports efficiency of 2% 
with purity of 80-90%, tuned for high purity (calibration)

Deep CNN for LARGE Detectors? (scalability)
Machine Learning for Particle Image Analysis



Toward Production
Machine Learning for Particle Image Analysis

Reproducible technique sharing is important...
● Submanifold Sparse Conv. Net for scalability

○ See Laura’s talk, and our benchmark … arXiv: 1903.05663
○ Open data sample: DOI 10.17605/OSF.IO/VRUZP
○ Software stuck: Singularity or Docker container
○ Implementation: github repo 

Toward HPC: contact them if you want help!
● SSCN + Horovod + custom MPI for production
● Corey Adams (ANL)

○ KNL/GPU nodes @ ALCF
● Eric Church, Jan F Strube, Alexander R. Hagen (PNNL)

○ SummitDev Intel Power8, now moving onto Power9
40

https://indico.cern.ch/event/708041/contributions/3269747/attachments/1812175/2960103/ACAT_2019_Laura_Domine.pdf
https://arxiv.org/pdf/1903.05663.pdf
https://osf.io/vruzp
https://www.singularity-hub.org/containers/6596
https://hub.docker.com/r/deeplearnphysics/larcv2
https://github.com/Temigo/uresnet_pytorch
mailto:corey.adams@anl.gov
mailto:echurch@fnal.gov
mailto:jan.strube@pnnl.gov
mailto:alexander.hagen@pnnl.gov


Experimental neutrino physics:

● Detector trend: particle imaging
○ LArTPC is the current frontier for imaging

● Many applications from computer vision
○ ML-based full data reconstruction being developed
○ Active but not mentioned: data/sim domain adaptation

● Next few years
○ Integration of ML-based reconstruction
○ Data/Simulation domain adaptations
○ Software stack development toward HPC

Summary
Machine Learning for Particle Image Analysis
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Thank you
for listening

and

Thank YOU
for organizing 
ACAT2019!
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Back Up Slides



HO HO HO
Machine Learning for Particle Image Analysis
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HO HO HO
Machine Learning for Particle Image Analysis
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HO HO HO
Machine Learning for Particle Image Analysis
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HO HO HO
Machine Learning for Particle Image Analysis
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HO HO HO
Machine Learning for Particle Image Analysis



ACAT 2019  L.Domine and K.Terao

Relabeling study
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Train data Regular Relabeled Relabeled + 
Weighting

Test data Regular Relabeled

HIP 98.0% 98.1% 98.1% 99.3%

MIP 99.4% 99.2% 99.4% 98.1%

EM shower 99.4% 97.9% 99.2% 99.2%

Delta rays 85.7% 94.8% 96.0% 97.2%

Michel 
electrons 56.6% 94.4% 94.7% 95.7%

Relabeled dataset = lonly primary ionization is labelled as Michel electrons



ACAT 2019  L.Domine and K.Terao

Number of pixels in candidate vs matched Michel 
cluster

Underclusteri
ng

50



ACAT 2019  L.Domine and K.Terao

Michel electrons energy spectrum reconstruction

Sample 
size

7105

Identificati
on purity

98.8%

Identificati
on 
efficiency

93.9%

Cluster 
efficiency

96.1%

Cluster 
purity

97.3%First ML-based approach
Simulation only, next step is 
data!
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Detectors
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Detecting Neutrinos: 
BMB

We cannot observe neutrinos, but we can detect 
particles that come out of a neutrino interaction.



Eνolution of Detectors

Inverse Beta Decay (IBD)
νe + p → e+ + n

by Reines & Cowan (Nobel Prize 1995)

Cd-doped water
0.4 ton, 100 PMTs

Neutrino Oscillation Experiments (I)

First neutrino 
detection
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Neutrino Oscillation Experiments (I)

KamiokaNDE Detector
3 kton ultra-pure water, 1000 20” PMTs

(shared Nobel Prize 2002)

Cd-doped water 
0.4 ton, 100 PMTs

(1956)

Birth of neutrino 
astrophysics!
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Eνolution of Detectors



Neutrino Oscillation Experiments (I)

Cd-doped water 
0.4 ton, 100 PMTs

(1956)

Ultra-pure water
3 kton, 1000 PMTs 

(1983)

Super-KamiokaNDE
50 kton ultra-pure water, 

11000 PMTs
(shared Nobel Prize 2015)

Discovery of
νatmo oscillation!
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Eνolution of Detectors



Neutrino Oscillation Experiments (I)

Cd-doped water 
0.4 ton, 100 PMTs

(1956)

Ultra-pure water
3 kton, 1000 PMTs 

(1983)
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Ultra-pure water
50 kton, 11000 PMTs 

(1996)

Discovery of
νsolar oscillation!

SNO
1 kton heavy-water Cherenkov, 

9600 PMTs
(shared Nobel Prize 2015)

Eνolution of Detectors



Neutrino Oscillation Experiments (I)

Cd-doped water 
0.4 ton, 100 PMTs

(1956)

Ultra-pure water
3 kton, 1000 PMTs 

(1983)

KamLAND
1 kton liquid scintillator, 1900 PMTs

My first neutrino experiment 
(undergraduate RA @ UC Berkeley)

Reactor neutrino
oscillation!

(the solar model is right!)
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Heavy water
1 kton, 9600 PMTs 

(1999)

Ultra-pure water
50 kton, 11000 PMTs 

(1996)

Eνolution of Detectors



Neutrino Oscillation Experiments (I)

Gd-doped liquid scintillator
RENO, Daya Bay, Double Chooz

Liquid Scintillator
1 kton, 1900 PMTs 

(2002)

“Near” & “Far” design
2 x 16 ton detectors with 400 
PMTs each (Double Chooz)

My Ph.D thesis! (MIT)
“Last mixing 

angle”  θ13 
Experiments!

59

Cd-doped water 
0.4 ton, 100 PMTs

(1956)

Ultra-pure water
3 kton, 1000 PMTs 

(1983)

Heavy water
1 kton, 9600 PMTs 

(1999)

Ultra-pure water
50 kton, 11000 PMTs 

(1996)

Eνolution of Detectors



Neutrino Oscillation Experiments (I)

Water Cherenkov 
Detector

Super-Kamiokande60



Water Cherenkov 
Detector

Super-Kamiokande

Neutrino Oscillation Experiments (I)
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Liquid Scintillator 
Detector

KamLAND

Less topological information
but excellent energy 

resolution

Neutrino Oscillation Experiments (I)
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Neutrino Oscillation Experiments (II)
How can we do better?

Three important detector features for oscillation measurement

Large Mass
(scalable)

Good Energy
Resolution

Particle ID
Capability

“More” statistics to measure
rare physics process

Better ν identification
background rejection

Precise Eν reduce
oscillation uncertainty 
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Challenge
s
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100 cm

10
0

 c
m

Cosmic Data : Run 6280  Event 6812  May 12th, 2016
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There may be lots of backgrounds

Analysis 
Challenges
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100 cm

10
0

 c
m

Cosmic Data : Run 6280  Event 6812  May 12th, 2016

≃ 14 cm x 14 cm

≃ 200 cm

Interaction vertex can be anywhere 
in LAr, varying in size (cm ~ meters)

Analysis 
Challenges



νμ

p

μ

π?

Cosmics

Cosmics

Cosmics
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Must identify event vertex
+ neutrino interaction topology (particle types)

Analysis 
Challenges
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Cluster energy depositions 
for an accurate calorimetry

Analysis 
Challenges



Deal with optical illusions in 2D projections + 
3D pattern recognitions

Analysis 
Challenges
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