

The LHCb Trigger

Introduction

Run 2 Trigger

HLT1

Buffer

Alignment & Calibration

HLT2

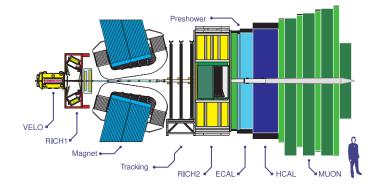
Upgrade

Triggerless readout Run 3 trigger

Conclusions

C. Fitzpatrick

March 12, 2019


A 30 MHz software trigger for the LHCb Upgrade

Conor Fitzpatrick on behalf of the LHCb collaboration

19th International Workshop on Advanced Computing and Analysis Techniques in Physics Research Saas-Fee, Switzerland

LHCb: The precision flavour experiment

▶ LHCb was built to study beauty and charm at the LHC:

- Precise particle identification (RICH + MUON)
- Excellent decay time resolution: \sim 45fs (VELO)
- High purity + Efficiency with flexible trigger

The LHCb Trigger

Run 2 Trigger HLT1 Buffer Alignment & Calibration

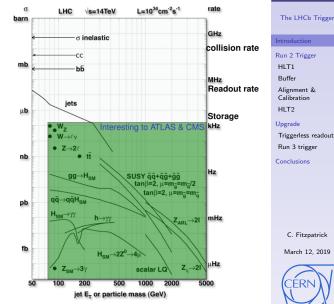
HLT2 Upgrade Triggerless readout Run 3 trigger

Conclusions


C. Fitzpatrick

The LHCb trigger

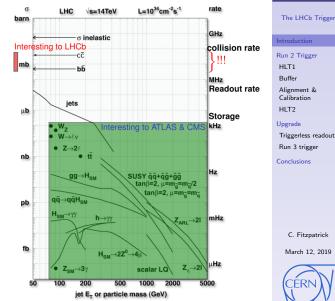
A good trigger does so by keeping more signal than background



3/20

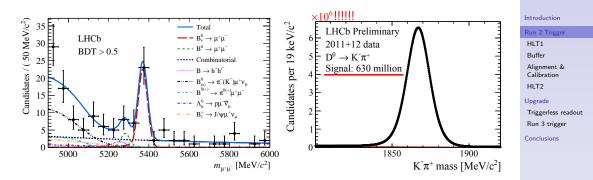
The LHCb trigger

- A trigger is needed to reduce storage and readout costs
- A good trigger does so by keeping more signal than background
- General purpose LHC experiments are interested in signatures in the kHz region
 - Readout at 100kHz is efficient with reasonably straightforward E_T requirements



3/20

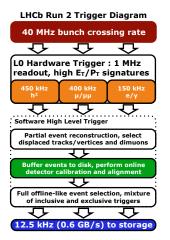
The LHCb trigger


- A trigger is needed to reduce storage and readout costs
- A good trigger does so by keeping more signal than background
- General purpose LHC experiments are interested in signatures in the kHz region
 - Readout at 100kHz is efficient with reasonably straightforward E_T requirements
- ► LHCb (£ = 4 × 10³² cm⁻² s⁻¹) faces a unique challenge:
 - $\blacktriangleright~45 kHz$ of $b \overline{b},~\sim 1 MHz$ of $c \overline{c}$
 - 1MHz readout is needed to stay efficient for beauty signals

The LHCb Run 2 trigger in two plots

▶ The LHCb trigger has to cover extremes of data taking:

- \blacktriangleright High efficiency to collect rare decays like ${\sf B}^0_{\sf s} \to \mu \mu^1$
- \blacktriangleright High purity for enormous charm signals like $D^0 \to K \pi^2$
- Must be flexible to operate in both extremes simultaneously: After readout, HLT has access to 100% of event in software


```
<sup>1</sup>Phys. Rev. Lett. 118, 191801 (2017)
<sup>2</sup>LHCb-CONF-2016-005
```

C. Fitzpatrick

The LHCb Trigger

The Run 2 LHCb Trigger

▶ The LHCb Run 2 trigger (2015-2019)

- Three trigger levels, with a hardware L0 stage:
 - \blacktriangleright Level-0 trigger buys time to readout the detector with Calo, Muon p_T thresholds: $40 \rightarrow 1 MHz$
 - Events built at 1MHz, sent to HLT farm (~27000 physical cores)
 - $\blacktriangleright\,$ HLT1 has 40 $\times\,$ more time, fast tracking followed by inclusive selections 1MHz \rightarrow 100kHz
 - HLT2 has 400 × more time than L0: Full event reconstruction, inclusive + exclusive selections using whole detector
- Flexibility comes from software-centric HLT design³

The LHCb Trigger

Introduction

Run 2 Trigger

HLT1

Buffer

Alignment & Calibration

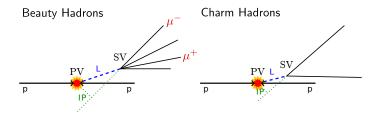
HLT2

Upgrade

Triggerless readout Run 3 trigger

Conclusions

C. Fitzpatrick


March 12, 2019

³arXiv:1812.10790 [hep-ex], submitted to JINST

HLT1

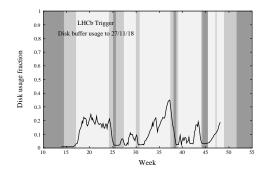
Beauty and charm hadron typical decay topologies:

- ► B[±] mass ~ 5.28 GeV, daughter p_T O(1 GeV)
- $\blacktriangleright~\tau\,{\sim}\,1.6$ ps, Flight distance $\,{\sim}\,1$ cm
- Important signature: Detached muons from $B \rightarrow J/\psi X$, $J/\psi \rightarrow \mu\mu$

Underlying HLT1 strategy:

- \blacktriangleright Fast reconstruction: Primary Vertices, High p_{T} tracks, optional Muon ID
- Inclusive triggering using MVAs on 1&2-track signatures

- ► D⁰ mass \sim 1.86 GeV, appreciable daughter p_T
- $\tau \sim$ 0.4 ps, Flight distance \sim 4 mm
- Also produced as 'secondary' charm from B decays.

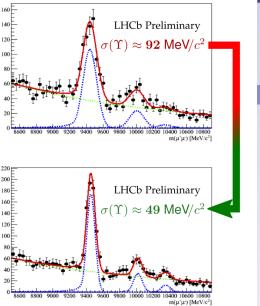


The LHCb Trigger Introduction Run 2 Trigger HLT1 Buffer Alignment & Calibration HLT2 Upgrade Triggerless readout Run 3 trigger Conclusions

C. Fitzpatrick

Disk Buffer

The LHCb Trigger Introduction Run 2 Trigger HLT1 **Buffer** Alignment & Calibration HLT2 Upgrade Triggerless readout Run 3 trigger Conclusions


C. Fitzpatrick

- ▶ HLT Farm is off-the shelf servers: Considerable (11PB) disk capacity
- ▶ HLT1 accepted events written to the disk in-fill at 100kHz: 2 week contingency
- ► HLT2 throughput in-fill is 30kHz, out of fill 90kHz when HLT1 isn't running
- Effectively doubles trigger CPU capacity, Farm is used twice for HLT, excess used for simulation
- Asynchronous HLT has another big advantage though...

Real-time Alignment + Calibration

- With Run 2 signal rates, efficient & pure output requires full reconstruction at HLT2
 - Online selections \rightarrow offline selections
 - Reduces systematic uncertainties and workload for analysts
- Alignment and calibration of full detector in the trigger needed
- While HLT1 is written to disk, alignment & calibration tasks run

The LHCb Trigger

Introduction

Run 2 Trigger HLT1

Alignment & Calibration

Triggerless readout

C. Fitzpatrick

March 12, 2019

'FRI

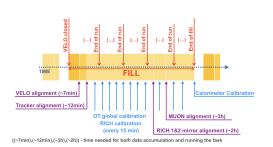
Run 3 trigger

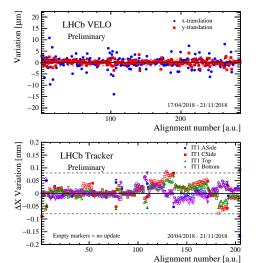
Conclusions

Buffer

HIT2

Upgrade


A fully aligned detector

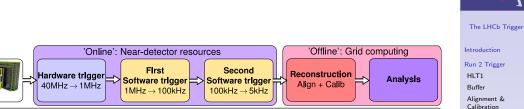

The LHCb Trigger

Introduction

Run 2 Trigger

- All detectors are aligned & calibrated in-situ using the full HLT1 output rate
- Updates applied automatically if needed prior to HLT2 starting

HLT1 Buffer Alignment & Calibration HLT2 Upgrade Triggerless readout Run 3 trigger


Conclusions

C. Fitzpatrick

HLT2: Reduced event formats

Time from collision:

ms

hours

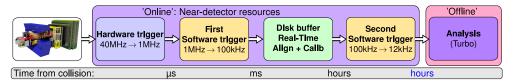
weeks

Trigger rates aren't important, output bandwidth is

μs

Offline reprocessing previously needed to recover best quality

C. Fitzpatrick


HLT2 Upgrade Triggerless readout

Run 3 trigger

Conclusions

HLT2: Reduced event formats

- Trigger rates aren't important, output bandwidth is
- Offline reprocessing previously needed to recover best quality
- After alignment: online == offline, why reprocess? Do analysis on trigger objects at HLT2, write only the relevant objects offline
- \blacktriangleright Significant reduction in event size \rightarrow higher rates for the same bandwidth

The LHCb Trigger

Introduction

Run 2 Trigger

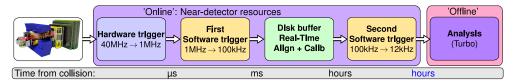
HLT1

Buffer

Alignment & Calibration

HLT2

Upgrade


Triggerless readout Run 3 trigger

Conclusions

C. Fitzpatrick

HLT2: Reduced event formats

- Trigger rates aren't important, output bandwidth is
- Offline reprocessing previously needed to recover best quality
- After alignment: online == offline, why reprocess? Do analysis on trigger objects at HLT2, write only the relevant objects offline
- \blacktriangleright Significant reduction in event size \rightarrow higher rates for the same bandwidth
- ► Added bonus: offline CPU freed up for simulation.

*LHC*р

The LHCb Trigger

Introduction

Run 2 Trigger

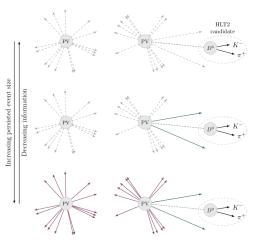
HLT1

Buffer

Alignment & Calibration

HLT2

Upgrade


Triggerless readout Run 3 trigger

Conclusions

C. Fitzpatrick

Turbo

The LHCb Trigger

Introduction

Run 2 Trigger

HLT1

Buffer

Turbo is the LHCb paradigm for

High degree of flexibility: Save only as

Keep all reconstructed objects, drop

Keep only objects used to trigger:

 'Selective Persistence' objects used to trigger + user-defined selection:

much of the event as is needed for

reduced event format data⁴

the raw event: 70kB

analysis

15kB

 $15 \rightarrow 70 \text{kB}$

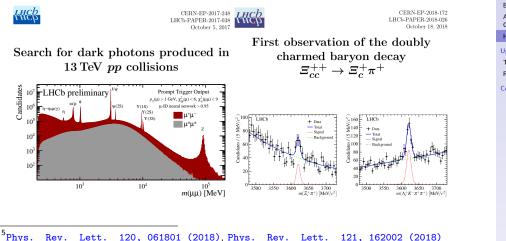
Alignment & Calibration

HLT2

Upgrade

Triggerless readout Run 3 trigger

Conclusions


C. Fitzpatrick

arXiv:1604.05596, NEW arXiv:1903.01360

Turbo usage in Run 2

- ▶ 528 trigger lines at HLT2. 50% are Turbo
- \blacktriangleright 25% of the trigger rate is Turbo but it counts for only 10% of the bandwidth
- Many analyses would not be possible without Turbo⁵

The LHCb Trigger

Introduction

Run 2 Trigger

HLT1

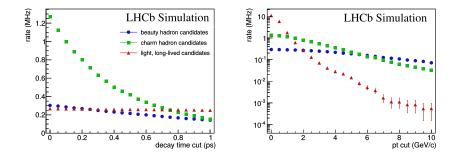
Buffer

Alignment & Calibration

HLT2

Upgrade

Triggerless readout Run 3 trigger


Conclusions

C. Fitzpatrick

The MHz signal era

Starting in 2021, LHCb will run at L = 2 × 10³³ cm⁻² s⁻¹: 5 × more collisions per second

 \blacktriangleright Readout becomes a bottleneck as signal rates \rightarrow MHz even after simple trigger criteria 6

The LHCb Trigger

Introduction Run 2 Trigger HLT1 Buffer

Alignment & Calibration

Triggerless readout

Run 3 trigger

Conclusions

HLT2

C. Fitzpatrick

March 12, 2019

⁶LHCb-PUB-2014-027

So what 'stuff' can we throw away?

- > The problem is no longer one of rejecting (trivial) background
- Fundamentally changes what it means to trigger

The LHCb Trigger

Introduction

Run 2 Trigger

HLT1

Buffer

Alignment & Calibration

HLT2

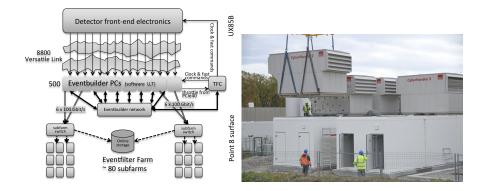
Upgrade

Triggerless readout Run 3 trigger

Conclusions

C. Fitzpatrick

March 12, 2019



Instead, we need to categorise different 'signals'

Requires access to as much of the event as possible, as early as possible

Reading out at 30MHz

► Solution: Readout and reconstruct 30 MHz of collisions in software

- Detector readout at the LHC bunch crossing frequency:
- Event builder, trigger farm & disk buffer in modular containers at the LHCb experiment area

The LHCb Trigger

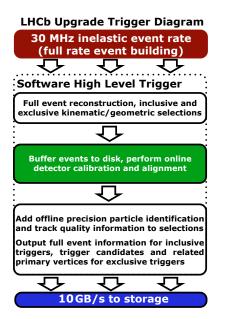
Run 2 Trigger HLT1 Buffer

Alignment &

Run 3 trigger

Conclusions

Calibration


HIT2

Upgrade Triggerless readout

C. Fitzpatrick

The Run 3 Trigger

- \blacktriangleright Run 2: has proven the strategy at 1 MHz at a pileup of ~ 1
- Run 3: must now process full 30 MHz at 5 × the pileup
- Overall strategy similar, but:
 - \blacktriangleright HLT1 \rightarrow first level trigger. Output 100kHz $\rightarrow \sim 1 MHz$
 - Disk buffer has contingency of O(days) instead of weeks
 - ► HLT2 \rightarrow second level trigger. 10GB/s mostly turbo output

The LHCb Trigger

Introduction

Run 2 Trigger

HLT1

Buffer

Alignment & Calibration

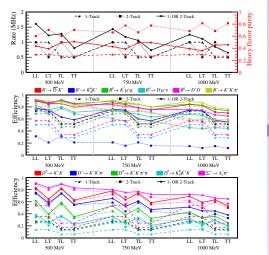
HLT2

Upgrade

Triggerless readout Run 3 trigger

Conclusions

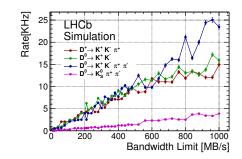
C. Fitzpatrick



Run 3 first level trigger

The LHCb Trigger

- 1- and 2- track performance under study⁷
 - MVA parameters for Loose and Tight configurations
 - ► Several tracking thresholds 500 → 1000MeV
- Results with minimal changes from Run 2:
 - 1-track needs more work
 - 2-track remains efficient


Introduction Run 2 Trigger HLT1 Buffer Alignment & Calibration HLT2 Upgrade Triggerless readout Run 3 trigger Conclusions

C. Fitzpatrick

Run 3 second level trigger

- Fully embrace the turbo paradigm: More exclusive selections than in Run 2, with wide adoption of MVAs
- Recent work to develop multivariate selections to select tracks generically coming from B and D decays⁸
- ▶ With many (> 500) trigger lines, sharing output bandwidth equitably is a challenge
- Genetic algorithm based procedure makes this easier, analysts decide between event size and output rate⁹:

The LHCb Trigger

Introduction

Run 2 Trigger

HLT1

Buffer

Alignment & Calibration

HLT2

Upgrade

Triggerless readout

Run 3 trigger

Conclusions

C. Fitzpatrick

March 12, 2019

⁸NEW arXiv:1903.01360 ⁹LHCb-PUB-2017-006

There's no turning back...

- Throwing away most of the event means care must be taken
- Turbo relies on never needing to reprocess:
 - Online monitoring & data quality are even more important
 - In Run 2 the disk buffer allows up to 2 weeks of safety margin
 - Not so in Run 3, where buffer will have O(days)
- Integration testing, real-time monitoring & robust procedures are critical components of the trigger
- During Run 2, we never needed to reprocess thanks to these procedures

The LHCb Trigger

Introduction

Run 2 Trigger

HLT1

Buffer

Alignment & Calibration

HLT2

Upgrade

Triggerless readout Run 3 trigger

Conclusions

C. Fitzpatrick

Conclusions

- ► LHCb signal rates in the Upgrade change the definition of a trigger:
 - \blacktriangleright 'Rejects background' \rightarrow 'categorises signal'
 - 'Reduces rate' \rightarrow 'Reduces bandwidth'
- In order to efficiently categorise MHz signals, LHCb will use a triggerless readout into a software trigger
- Offline quality selections mean only subset of the event has to be saved for analysis
 - Requires fully aligned & calibrated detector in the trigger
- Not without its challenges: Extensive upgrades to the software as well as the detector
 - See talks in this session from N. Nolte, M. Cattaneo

The LHCb Trigger

Introduction

Run 2 Trigger

HLT1

Buffer

Alignment & Calibration

HLT2

Upgrade

Triggerless readout Run 3 trigger

Conclusions

C. Fitzpatrick

