
Modelling conditional probabilities with

Riemann-Theta Boltzmann Machines

Stefano Carrazza1,2, Daniel Krefl3, Andrea Papaluca1

1 TIF Lab, Dipartimento di Fisica, Università degli Studi di Milano
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Abstract. The probability density function for the visible sector of a Riemann-Theta
Boltzmann machine can be taken conditional on a subset of the visible units. We derive that
the corresponding conditional density function is given by a reparameterization of the Riemann-
Theta Boltzmann machine modelling the original probability density function. Therefore the
conditional densities can be directly inferred from the Riemann-Theta Boltzmann machine.

1. Introduction
Modelling the underlying probability density function of a dataset is a non-trivial problem,
already in the low dimensional setting. In particular so in the non-normal and multi-modal
case. To make things even more complicated, we often do not only want to model the probability
density, but as well obtain related quantities like marginalizations, conditionals or the cumulative
density function.

Several techniques to model probability densities of unknown functional form can be found
in the literature. To mention a few: Kernel density estimation, mixture models, copulas,
normalizing flows, and neural networks. However, each technique comes with its own advantages
and drawbacks, and it is fair to say that so far no general use technique is at hand.

Inspired by Boltzmann machines [1], the authors of [2] introduced a novel kind of stochastic
network, distinguished by an infinite hidden state space given by ZNh , with Nh denoting the
number of hidden units. Key quantities, like the visible sector probability density function, can
be calculated in closed form involving Riemann-Theta functions [3]. Therefore, the network has
been denoted as Riemann-Theta Boltzmann machine, for short RTBM. In particular, the visible
sector density function is given by a novel parametric model, which can be made arbitrarily
expressive via increasing the dimension of the hidden state space. The appealing property of
this new kind of Boltzmann machine is that the normalization (summation over all states) is
given in closed-form in terms of the Riemann-Theta function. The closed form solution allows
to keep full analytic control, and in particular to derive related quantities, like for example
the corresponding cumulative distribution function or conditional densities. The latter will be
discussed in this note.

As conditional distributions are the essential ingredient of Bayes’ theorem, modelling
conditional distributions has wide applications in machine learning. For instance, in probabilistic



modelling a straight-forward application would be as a Bayes classifier.

1.1. RTBM
The visible sector probability density function of the Riemann-Theta Boltzmann machine is
given by [2]
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the Riemann-Theta function. The density P (v) is parameterized by positive definite matrices
Q and T of dimension Nh × Nh, respectively Nv × Nv, an arbitrary matrix W of dimension
Nv ×Nh and bias vectors Bh and Bv of dimensions Nh × 1, respectively Nv × 1.

As has been discussed for the first time in [2], the density P (v) is a powerful density
approximator due to its high intrinsic modelling capacity, determined by the number of hidden
units Nh. For a given set of data samples, the underlying probability density function can be
approximated by P (v) via fixing the parameters in a maximum likelihood fashion. However,
one should keep in mind that the modelling capacity one can reach in practice is limited by
the rather high computational cost of evaluating the Riemann-Theta function, which at present
limits Nh to be quite small. For details we refer to [2] and references therein.

It can be shown that P (v) also possesses an interpretation in terms of a specific gaussian
mixture model with an infinite number of gaussian constituents [4]. In particular, certain useful
properties are inherited from the multi-variate gaussian density, like for example functional
invariance under affine transformations of the datapoints v.

In this note we will discuss another useful property, which one may see as well to be inherited
from the multi-variate gaussian. Namely, that the conditional density functions can again
be expressed in terms of the original density P (v), albeit under a different parameterization.
Therefore, once we learned an approximation P (v) of a multi-variate density via a RTBM, we
obtain all the conditional densities automatically, as we will show in the following section.

2. Conditional probability
2.1. Derivation
We take v = (y1, . . . , ym, d1, . . . , dn) with m + n = Nv and consider the conditional density
function

P (y|d) =
P (v)

P (d)
,

with P (v) given by the density (1) and P (d) its marginalization

P (d) =

∫ ∞
−∞

[dy]P (y, d) . (2)

It is usefull to decompose the parameter matrices T,W and Bv of the density (1) into the
following block forms:
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 ,



with T̄0 a m×m square matrix, T̄1 a n×m rectangular matrix and T̃ a n× n square matrix.
Similarly,

W =
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W1

 , Bv =

(
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)
,

with W0 and W1 rectangular matrices of dimension m×Nh, respectively n×Nh. Bv,0 and Bv,1

are column vectors of size m, respectively, n.
Imposing the above block structure onto the terms vtTv, Bt

vv and vtW occurring in the
density (1) gives
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and leads to the following expression for the joint density P (v) = P (y, d):
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Note that the terms Bt
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−1Bv, Bt
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because they do not include y and therefore can be pulled out of the marginalization
integration (2). After explicitation of the theta function the integral we have to solve to obtain
P (d) reads
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Hence, we find the explicit expression
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which in turn leads to the desired conditional probability
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Figure 1: Graphical representation of a conditional probability RTBM architecture.

Note that P (y|d) as given above is easily seen to correspond to a probability density function
P (v) of a Nv = m RTBM with the following reparameterization:

T → T̄0 ,

W →W0 ,

Bv → Bv,0 + T̄ t
1d ,

Bh → Bh +W t
1d .

(7)

We conclude that starting from a “parent” RTBM modelling a multidimensional density,
we can generate “child” RTBMs modelling its conditional probabilities simply by choosing
the parameters accordingly. For illustration, we sketched the surviving parameters of the
corresponding network architecture in figure 1.

2.2. Examples
As an example of what we have discussed above, let us consider the multivariate Student’s
t-distribution:

f(x) =
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As derived in [5], [6], it possesses an analytic expression for its conditional. For x = (x1, x2) one
finds that
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)
. (9)

Note that the conditional is again a t-distribution. This allows us to easily compare the analytical
conditional with the one obtained from an RTBM trained to fit the corresponding t-distribution.

We consider a t-distribution with the following parameters:

µ = (0, 0), Σ =

(
2 −1
−1 4

)
, v = 6, (10)

A RTBM with Nv = 2 and Nh = 2 is trained with the CMA-ES algorithm on 5000 samples
thereof. The best solution was found at a log-likelihood loss of ∼ 1.3 · 104. The found RTBM
parameters fitting the above t-distribution read:
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)
.
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Figure 2: In the center the two dimensional histogram sampled by a multivariate Student t-distribution (8) with
parameters (10) is shown. The contour plot of the trained RTBM (11) is shown in blue, the analytic distribution
in red. On the bottom the comparison between the analytic conditionals given by (9) with the ones generated
using (7) are shown.

Multivariate Student t 2D Example 3D Example

Conditional MSE Conditional MSE Conditional MSE

P (x2| − 2) 3.255 · 10−4 P (y|2) 1.176 · 10−4 P (y1, y2| − 0.4) 4.953 · 10−5

P (x2|0) 4.083 · 10−5 P (y|1.3) 6.888 · 10−5 P (y1, y2| − 0.6) 6.775 · 10−5

P (x2|1) 4.433 · 10−5 P (y|0.4) 2.538 · 10−4 P (y1, y2| − 0.8) 5.304 · 10−5

Table 1: MSE calculated for each of the conditional distributions shown in figure 2, 3a, 3b. Note that for the
2D and 3D examples, the MSE is calculated with respect to the empirical conditional derived from the relative
histogram.

The analytic contribution and its RTBM based fit are shown in figure 2. The figure also shows
three examples of conditionals derived following section 2.1 and the corresponding analytic
solution obtained from (9).

In order to quantify the error in modelling the conditionals with the RTBM, we calculated the
mean squared error (MSE) between the analytic distribution and the RTBM fit at the sample
points used for training. The results are shown in table 1.

For illustration purposes, we consider two further examples for the conditional densities
obtainable through relation (7). We only show results with Nv = 2 and Nv = 3 in order to
simplify the visualization of results. However one should note that the current methodology is
valid for higher dimensional examples as well.

On both examples the RTBM parameters are initialized manually in order to achieve a
more complicated distribution P (v) than the t-distribution discussed above. The conditional
distributions are obtained as before following the transformations presented in section 2.1. On
both examples we compare the resulting conditional probabilities with the empirical distributions
obtained using the RTBM sampling algorithm presented in [4].

The RTBM in the two dimensional example with Nv = 2 and Nh = 4 is defined via the



(a) On the right, the two dimensional histogram of
a RTBM with Nh = 4, Nv = 2 and initialized
with parameters (12) is shown. The contour plot
is represented in blue. On the left the conditional
probabilities P (y|d) for three different values d =
2, 1.3, 0.4 are shown. The relative one dimensional
histogram is shown in grey.

(b) On the right, a sampling of the three dimensional
distribution given by a RTBM with Nv = 3, Nh =
1 and parameters (13). On the left, the contour
plots of the conditional probabilities P (y1, y2|d),
represented by the dashed blue curves, evaluated at
d = −0.4, −0.6, −0.8 are shown respectively. The
corresponding two dimensional empirical histograms
are shown in gray.

Figure 3: Examples of conditional probabilities.

following parameter choice:

W =

(
18.54 3.02 −12.89 −5.45
0.46 1.01 −1.32 −5.54

)
, T =

(
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)
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 .

(12)

The corresponding distribution and derived conditional distributions are shown in figure 3a.
For the three dimensional example, we define a RTBM with Nv = 3 and Nh = 1. The chosen

parameters are

W =

−15.76
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2.09

 , T =

16.02 −6.52 −6.76
−6.52 29.04 −2.56
−6.76 −2.56 42.16

 , Bv =
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 ,
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)
, Q =

(
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)
.
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The corresponding distribution and examples of obtained two dimensional conditional densities
are show in figure 3b.

The MSE between the conditional distributions derived from the RTBM and the empirical
conditionals derived from histograms are listed in table 1. However, one should keep in mind
that the purpose of the MSE calculation in these two examples is soley to illustrate that the
relation (7) is correct. By construction, the RTBM constitute the true (analytic) underlying
distribution for these examples.
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