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Abstract. Complete one-loop electroweak radiative corrections to polarized Bhabha
scattering are presented. Numerical results are shown for the conditions of future circular and
linear electron-positron colliders with polarized beams. A new Monte Carlo event generator for
simulation of Bhabha scattering is created. Higher order QED collinear radiation factors are
evaluated in the next-to-leading logarithmic approximation.

1. Introduction

Electron-positron (Bhabha) scattering is a basic process in particle physics. It is widely used
for the luminosity monitoring at e+e− colliders. Bhabha scattering with unpolarized initial
particles has been studied for many years since Ref. [1]. Radiative corrections (RC) for the
case of polarized e+e− beams were considered in Refs. [2, 3]. There are several Monte Carlo
event generators for unpolarized Bhabha scattering, see e.g. [4]. In the SANC computer system
framework, the complete one-loop electroweak (EW) RC to Bhabha scattering were recently
calculated [5] and expressed in terms of helicity amplitudes (HA) and form factors (FF).

In comparison with processes being studied at modern hing-energy hadron colliders, e+e−

interactions have a clean initial state, a lower multiplicity in the final state, and therefore provide
the possibility to perform much more precise measurements in most cases. The substantially
higher energy range of the future colliders also demands re-estimation of various effects from
both experimental and theoretical points of view. Precise measurements with polarized beams
at future e+e− colliders like FCC-ee, CEPC, ILC and CLIC definitely require an advanced
theoretical support [6, 7, 8, 9, 10]. In particular, physical programs of the future e+e− linear
colliders [11, 12] always demonstrated a great interest to the effects related to the beam
polarization. These facts motivate us to work on high-precision theoretical predictions for
processes which will be studied at future e+e− colliders. In order to match experimental
requirements, we have to implement our results into Monte Carlo event generators.

In Sect. 2 we present and discuss the results [13] on the complete one-loop electroweak
radiative corrections to polarized Bhabha scattering. Tuned comparisons with results of



alternative calculations partially available in the literature were performed. In Sect. 3 we show
preliminary results on QED collinear radiative factors in the O(α3L2) order.

2. One-loop corrections to polarized Bhabha scattering

Consider scattering of longitudinally polarized positrons and electrons e++e− −→ e−+e++(γ).
At large energies we will neglect contributions proportional to the ratio of the electron mass to
the beam energy.

The complete one-loop covariant amplitude comes out from the straightforward calculation
by means of the SANC computer system [5]. The amplitude is parameterized by a certain number
of form factors (FFs) F = 1 + kF̃ , where “1” stands for the Born level and the term F̃ with
the factor k ≡ g2/(16π2) is the one-loop contribution. After squaring the amplitude we neglect
terms proportional to k2 in order to get the pure one-loop approximation without any admixture
of higher-order terms which can be added later if required.

The covariant amplitude for high-energy Bhabha scattering can be written in terms of the
electromagnetic running coupling constant and four FFs with permuted arguments s and t as:

A = Aγ(s) +AZ(s)− [Aγ(t) +AZ(t)] (1)

= i e2
{

[

γµ ⊗ γµ
Fγ(s)

s
− γµ ⊗ γµ

Fγ(t)

t

]

+
χZ(s)

s

{

(

I(3)e

)2
γµγ6 ⊗ γµγ6FLL(s, t, u)

+ 2δeI
(3)
e γµ ⊗ γµγ6FQL(s, t, u) + δ2eγµ ⊗ γµFQQ(s, t, u)

}

− χZ(t)

t

{

s ↔ t

}

,

see Ref. [13] for the notation details.
The complete result forO(α) corrections can be separated into the virtual (loop) contribution,

the part due to the soft photon emission, and the one due to the real hard photon
Bremsstrahlung. It is more convenient to calculate a cross-section by squaring non-interfering
helicity amplitudes (HA). Complete analytic results were obtained for HA of Bhabha scattering
by means of the SANC system. There are six non-zero HA, however, since for Bhabha scattering
FZ

LQ
= FZ

QL
, the number of independent HA is reduced to four.

We obtained the compact expression for the Born (FQL,LL,QQ = 1) and the virtual (loop) part
within the HA approach in the form

H++++ = H−−−− = −2e2
s

t

[

F (γ,Z)
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QL
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]

,
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]

,
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LL
(s, t, u) − 2δeFZ

LQ
(s, t, u) )

]

+
s

t

[

s ↔ t
])

,

H−++− = −e2 c+
([

F (γ,Z)
QQ (s, t, u)

]

+
s

t
[s ↔ t]

)

, (2)

where c± = cos ϑ± 1 and F (γ,Z)
QQ (a, b, c) = F (γ)

QQ (a, b, c) +χZ(a)δ
2
eF

(Z)

QQ (a, b, c).
The Bremsstrahlung module of the SANC system computes the contributions due to the soft

and inclusive hard photon emission. The soft photon contribution contains infrared divergences
which are compensated by the corresponding divergences in the one-loop virtual QED (EW)
corrections. For a crosscheck, the contribution of the hard photon emission was obtained both
by direct squaring of the matrix element and by the helicity amplitude approach.

To study the case of longitudinal polarization, we generated helicity amplitudes and applied
the formalism described in [14]. In our notation the Bhabha scattering cross-section with



longitudinally polarized initial particles can be expressed as

dσ(Pe− , Pe+)

d cos ϑ
=

1

128πs

[

(1− Pe−)(1 − Pe+)
∑

ij

|H++ij |2 + (1− Pe−)(1 + Pe+)
∑

ij

|H+−ij |2

+ (1 + Pe−)(1− Pe+)
∑

ij

|H−+ij|2 + (1 + Pe−)(1 + Pe+)
∑

ij

|H−−ij |2
]

. (3)

For a crosscheck we got an analytic zero for the difference between the square of the covariant
amplitude (we introduced the spin density matrix into our procedures) and Eq. (3).

The left-right asymmetry ALR and the relative correction δ are defined as

ALR =
dσ(−1, 1) − dσ(1,−1)

dσ(−1, 1) + dσ(1,−1)
, δ =

dσ1−loop(Pe− , Pe+)

dσBorn(Pe− , Pe+)
− 1, (4)

where we dropped d cos ϑ for the sake of brevity.
Here we present some numerical results for EW RC to Bhabha scattering obtained by means

of a new Monte Carlo event generator created by the SANC group which was presented at this
conference in the talk by R. Sadykov. To crosscheck our results, we performed comparisons with
the ones obtained by means of other modern packages. But actually, it was possible to compare
results only partially since there is no any other code describing high-energy polarized Bhabha
scattering with one-loop precision.

We found an agreement between our analytic result for the hard photon Bremsstrahlung
contribution with the one obtained by means of the CalcHEP computer system [15]. Numerical
results for polarized Bhabha scattering with hard photon Bremsstrahlung were compared with
the ones of the WHIZARD system [16]. A good agreement was observed as well. We obtained also
a very good agreement (six significant digits) in the comparison of the SANC and AItalc-1.4 [17]
results for the unpolarized differential Born cross-section and for the sum of the virtual and the
soft photon contributions. Tables with the numerical results of the mentioned above comparisons
can be found in ref. [13].

Table 1. Born and 1-loop cross-sections of Bhabha scattering and the corresponding relative
corrections δ for

√
s = 250, 500, and 1000 GeV.

Pe− , Pe+ 0, 0 -0.8, 0 -0.8, -0.6 -0.8, 0.6√
s = 250 GeV

σBorn
e+e−

, pb 56.6763(1) 57.7738(1) 56.2725(4) 59.2753(5)

σ1−loop
e+e−

, pb 61.731(6) 62.587(6) 61.878(6) 63.287(7)
δ, % 8.92(1) 8.33(1) 9.96(1) 6.77(1)√

s = 500 GeV

σBorn
e+e−

, pb 14.3789(1) 15.0305(1) 12.7061(1) 17.3550(2)

σ1−loop
e+e−

, pb 15.465(2) 15.870(2) 13.861(1) 17.884(2)
δ, % 7.56(1) 5.59(1) 9.09(1) 3.05(1)√

s = 1000 GeV

σBorn
e+e−

, pb 3.67921(1) 3.90568(1) 3.03577(3) 4.77562(5)

σ1−loop
e+e−

, pb 3.8637(4) 3.9445(4) 3.2332(3) 4.6542(7)
δ, % 5.02(1) 0.99(1) 6.50(1) -2.54(1)

In Figs. 1, we give an example of numerical results produced by the new SANC Monte
Carlo event generator for the unpolarized differential cross-section of Bhabha scattering and
the relative O(α) correction δ (in percent) as a function of the electron scattering angle for
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Figure 1. The differential cross-section (left) [in pb] and the relative correction δ (right) [in %]
vs. the cosine of the electron scattering angle for

√
s = 250 GeV.
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Figure 2. The left-right asymmetry ALR vs the cosine of the electron scattering angle at√
s = 250 GeV (left) and

√
s = 1000 GeV (right).

| cos θ| < 0.9 and
√
s = 250 GeV. The huge relative radiative corrections for the backward

scattering angles are due to the smallness of the Born cross-section in this domain. That does
not mean any problem with the perturbation theory. The integrated cross-section of the Bhabha
scattering and the relative correction δ are given in the Table 1 for various energies and beam
polarization degrees. The ALR asymmetry at

√
s = 250 and 1000 GeV is shown in Fig. 2. One

can see that the EW radiative corrections affect the asymmetry considerably.

3. Higher-order collinear NLO radiation functions

At high energies, QED radiative corrections enhanced by large logarithms L = ln(Q2/m2
e)

are numerically very important. The so-called leading logarithmic (LO) approximation takes
into account terms proportional to α2Ln, n = 1, 2, . . . The next-to-leading logarithmic (NLO)
approximation includes also terms of the order O(α2Ln−1. The factorization theorem well known
in QCD allows us to write down the Bhabha scattering cross-section in the next-to-leading



logarithmic approximation in the following form [18]:

dσ =
∑

a,b,c,d=e,ē,γ

∫ 1

z̄1

dz1

∫ 1

z̄2

dz2Dstr
ae (z1)Dstr

bē (z2)

[

dσ
(0)
ab→cd(z1, z2) + dσ̄

(1)
ab→cd(z1, z2)

]

×
∫ 1

ȳ1

dy1
Y1

∫ 1

ȳ2

dy2
Y2

Dfrg
ec

(

y1
Y1

)

Dfrg
ēd

(

y2
Y2

)

+O(αnLn−2),

where Dstr(frg)
ba (z) are QED structure (fragmentation) functions which provide the probability

density to find parton (particle) b in particle (parton) a with the energy fraction z. Cross-

sections dσ
(0)
ab→cd and correction to it dσ̄

(1)
ab→cd are computed for massless partons a, b, c, d in the

Born and one-loop approximations, respectively. Mass singularities are subtracted from the
one-loop parton cross-section dσ̄(1) in the MSbar scheme.

Explicit expression for the QED structure functions are well known in the leading logarithmic
approximation [19, 20, 21]. The NLO contributions to for QED structure and fragmentation
functions in the O(α2L1) order were specified in Refs. [22, 23]. Continuously increasing
experimental precision makes it worth to include also the O(α3L2) order contributions. They
can be found by means of iterative solutions of the QED DGLAP evolution equations in the
NLO approximation. Here we present new results for the O(α3L2) contributions to non-singlet
electron structure function. Taking into account the pure photonic contributions we get

D(γ)
ee (x, µf ,me) = δ(1 − x) +

α

2π
d1(x, µ0,me) +

α

2π
LfP

(0)
ee (x)

+

(

α

2π

)2 (1

2
L2
fP

(0)
ee ⊗ P (0)

ee (x) + LfP
(0)
ee ⊗ d1(x, µ0,me) + LfP

(1,γ)
ee (x)

)

+

(

α

2π

)3 (1

6
L3
fP

(0)
ee ⊗ P (0)

ee ⊗ P (0)
ee (x) + L2

fP
(0)
ee ⊗ P (1,γ)

ee (x)

+L2
fP

(0)
ee ⊗ P (0)

ee ⊗ d1(x, µ0,me)

)

+O(α3L1). (5)

Here µf and µ0 are the factorization and renormalization scales; Pee are electron splitting
functions; d1(x) is the initial condition for evolution equations, see details in Ref. [23]. Pair
contributions to the structure function will be considered elsewhere. The O(α3L2) contributions
are

P (0)
ee ⊗ P (1,γ)str

ee (x) =

[

1 + x2

1− x

(

−4S12(1− x) + 4Li2(1− x)(ln(1− x)− ln(x))

−4 ln(x) ln2(1− x) + 4 ln2(x) ln(1− x)− 2

3
ln3(x) + 3Li2(1− x)− 3 ln(x) ln(1− x)

+
3

2
ln2(x) + 4ζ(2) ln(x) + 6ζ(3)− 3ζ(2) +

3

8

)

+ 4(1 + x)S12(x) +
1 + x

2
ln3(x)

−2(1 + x) ln2(x) ln(1− x) + (6x− 2)Li2(1− x) + (6− 2x) ln(x) ln(1− x)

+

(

11

4
x− 9

4

)

ln2(x) + (6− 4x) ln(1− x) + (5x− 3) ln(x) + 2x− 1

2

]

+

, (6)

where the standard plus prescription is applied. The second relevant new contribution is

P (0)
ee ⊗ P (0)

ee ⊗ d1(x,me,me) =

[

1 + x2

1− x

(

16S12(1− x) + 8Li2(1− x) ln(x)− 16 ln3(1− x)

+20 ln(x) ln2(1− x)− 4 ln2(x) ln(1− x) + ζ(2)(40 ln(1− x)− 16 ln(x))− 32ζ(3)



−30 ln2(1− x)− 2 ln2(x) + 24 ln(x) ln(1− x) + 24ζ(2) − 17

2
ln(1− x) + 2 ln(x) +

15

4

)

+(1 + x)

(

20Li3(1− x)− 10S12(1− x)− 20Li2(1− x) ln(1− x)− 2Li2(1− x) ln(x)

−10 ln(x) ln2(1− x) + 3 ln2(x) ln(1− x) + 8ζ(2) ln(x)

)

− 2(1 + x)Li2(1− x)

+20(1− x) ln2(1− x) +
3

2
(1− x) ln2(x)− 18 ln(x) ln(1− x) + 14x ln(x) ln(1− x)

+4(1− x) ln(1− x)− 2 ln(x)− 16(1 − x)ζ(2)− 2(1 − x)

]

+
. (7)

Note that expressions (6) and (7) represent contributions to universal collinear QED radiation
factors which can be useful for description of a wide class of processes at high energies.

4. Conclusions

The SANC computer system is upgraded to facilitate description of processes at electron-colliders
with polarized beams. The results on complete electroweak one-loop radiative corrections to
polarized Bhabha scattering are presented. A new Monte Carlo event generator to simulate this
process is created.

The O(α3L2) contributions to the electron structure function will be implemented into the
ZFITTER code [24] in order to perform realistic numerical estimates of the corresponding effect
in measurable cross-sections. Further, these contributions will be used in Monte Carlo event
generators being under development by the SANC group for future e+e− colliders like FCC-ee
and CEPC.
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