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Abstract. Due to the large size of datasets accumulated at the LHC, analysis results are
often limited by systematic effects. The application of multivariate analysis techniques such
as Boosted Decision Trees (BDTs) or artificial neural nets typically maximises the statistical
significance of the results while ignoring systematic effects. There is a known strategy to mitigate
systematic effects for neural nets but no firmly established procedure for BDTs. We present
a method to incorporate systematic uncertainties into a BDT, the systematics-aware BDT
(saBDT ). We evaluate our method on open data of the ATLAS Higgs machine learning challenge
and compare our results to neural nets trained with an adversary.

1. Introduction
In the past many particle physics experiments were limited in their accuracy by the lack of
statistics. With the increase in luminosity the data samples are often so large that systematic
uncertainties dominate the total error. If a multivariate analysis is employed, the systematics
are typically not explicitly taken into account in the training and the method is optimized to
maximize the performance estimate based on statistical uncertainty only. In the case of artificial
neural nets (ANN) there exists a method to take into account systematic uncertainties in the
training. Adversarial ANNs (AdvANNs)[1] are used in order to mitigate the effect of systematic
uncertainties [2]. While this works well for neural nets, no firmly established method exists for
Boosted Decision Trees (BDTs).

This paper attempts to fill this gap and presents systematics-aware BDTs (saBDT ) which
were developed during a Master thesis [3].1 The goal is to sacrifice some statistical power while
reducing the dependence on systematic effects.

We implemented our systematics-aware algorithm into BDTs with AdaBoost in TMVA of
ROOT 6.14 [6]. Our example application is based on the public ATLAS data of the Kaggle
Higgs Challenge [5]. This challenge provided us with the data used to train and evaluate our
new method.

2. Evaluation
The impact of systematic uncertainties on a typical analysis is evaluated by comparing three
datasets with different systematic effects. One set represents our best knowledge of the

1 After our presentation at the conference we were made aware of a parallel development, QBDT, [4] which is
similar to our method.



systematic effect (the standard dataset std) while the two others present the ±1 σ variation
of the effect (from now on called variational datasets). A systematic uncertainty on a quantity
A is calculated by taking the value derived from the standard dataset and comparing it to the
variational datasets. We define the average and the quadratic difference as:

∆sys (A) =
1

2
( |Astd −A−1σ| + |Astd −A+1σ| ) (1)

∆sys2 (A) =
(

(Astd −A−1σ)2 + (Astd −A+1σ)2
)

(2)

To quantify the influence of systematics on statistical results we use the Advanced
Approximate Median Significance which was developed in the context of the Kaggle Higgs
challenge. It considers both statistical and systematic uncertainties. A full explanation of the
metric can be found in [7].
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s is the number of signal correctly classified as signal by the BDT and b the number of background
events wrongly classified as signal. σB is the difference between b obtained from the standard
dataset and b obtained from the variational datasets: σB = ∆sys(B). In addition we introduce
a regularisation parameter breg to avoid excessive variations of AAMS for small background
values. Since the number of signal and background varies with the chosen BDT cut value, the
maximum AAMS is taken as figure of merit.

The actual Kaggle Higgs challenge only used the Approximate Median Significance
(AMS) which considers statical errors only. If the systematic error σB is negligible the AAMS
is equal to AMS with the same breg parameter. Aside from calculating a metric for the combined
performance considering both statistical and systematic uncertainties, the absolute reduction of
the impact of systematic uncertainties is also of interest. To estimate this we use the maximal
σB obtained from varying the cut on the BDT value.

2.1. Systematics-Aware BDT
It is conceivable that data features which distinguish signal and background differ between
standard and variational datasets thus creating a systematic effect in the BDT output. While
identical performance between standard and variational dataset is unlikely to be achieved, the
goal to reduce the performance differences between variational and standard datasets can be
utilized in the systematics-aware training.

In the following, two procedures to introduce a penalty on performance differences will be
discussed. In every step of tree building the performance is cross-checked with all three datasets.
If the performances deviate from each other the tree building step is penalized by adding a
penalty term to the quantity that determines the optimal node splitting. A similar penalty term
will be added to the single tree Boost weight.

2.1.1. Penalty on the optimal node splitting When building a new tree at first the optimal split
for the root node has to be found. All possible variables and split values are checked, the best
one is chosen based on the Gain. The Gain can be calculated with multiple metrics. In this
paper we worked with the Gini index G, which quantifies the separation power of a split. During
the tree building, a split compares the metric of the mother node before the split to the metric



of the two daughter nodes after the split [6]. The Gini index for one node is defined through the
purity p of a node which is 1 for a pure signal node and 0 for a pure background node:

p =
NSignal

NTotal
(5)

G = p · (1− p) (6)

NSignal is the number of signal events and NTotal the total number of events in the node. G
follows an upside-down parabola, it has its maximum for p = 0.5 and is zero when p = 0 and
p = 1. A purity close to 0 or 1 is wanted, as this would indicate a clean sample with just
background or signal. Therefore the goal is to minimize the Gini index. This leads to the Gain
being defined as:

Gain = GParent −GLeft −GRight (7)

With GLeft and GRight defined as the Gini index of the left and right daughter node respectively.
The Gain is maximal if the daughters’ Gini indices are minimal, which therefore fits our
requirements.

The Gain needs to be penalized for differing behavior on the variational datasets. To stay
consistent the measure for the differing behavior is again based on the Gini index. The same
split as on the Standard dataset is performed on the variational datasets and the Gini index
of the daughter nodes on the variational datasets is calculated. The Gain is then penalized
according to the quadratic systematic differences on the purity p:

NewGain = Gain− λCut
8
·
√

∆sys2(pLeft) + ∆sys2(pRight) (8)

The difference is measured as quadratic sum of the differences of the two daughter nodes for all
different datasets. λCut is a penalty parameter to control the strength of the penalty and can
be varied between 0 and 1.
In fig. 1 the AAMS and σmaxB of the saBDT depending on λCut can be seen. For small λCut

Figure 1. AAMS (left) and σmaxB (right) for different values of λCut.

the AAMS is stable, possibly with a slight increase. For λCut & 0.001 a drop in performance
is visible. This happens along with a decrease of σmaxB , which indicates the saBDT being more
invariant against systematic shifts. The errors shown here are correlated. Therefore no clear
conclusion can be drawn yet if the observed increase for low λCut in AAMS is meaningful.



2.1.2. Penalty on determination of the Boost weight The next step after building the decision
trees of a BDT is the boosting. Every decision tree gets assigned a Boost weight BW which is
used to calculate the final BDT scores. The weight of a tree is based on its performance and
rewards good separation power. To assess the separation power the error rate err is used. This
metric counts the number of misidentified events compared to the overall number of events and
calculates the Boost weight:

err =
Nmissid

Ntotal
(9)

BW =
1− err
1 + err

(10)

This formula holds true for adaptive boosting, which is used in this study. The standard Boost
weight is maximal for an error rate of zero and drops exponentially for higher error rates.

For the saBDT this weight should also take into account the different performances on
variational datasets. In order to stay consistent the error rate is used as metric once more.
The error rate of a single decision tree is calculated for all three datasets and compared. The
boostweight is then multiplied with a factor depending on the difference in performance on the
datasets.

NewBW = BW · exp
(
−λBoost

2
·∆sys2(err)

)
(11)

From equation 11 is is clearly visible that the smaller the differences are, the closer the factor is
to 1. Additionally there is a penalty parameter λBoost to tune the strength of the penalty. For
0 it gives the same behavior as a normal BDT, while for larger values the penalty for different
performances increases.

3. Results
3.1. Systematic variation
As an example we consider a single systematic uncertainty on the jet energy scale that affects
all jet quantities in the ATLAS machine learning challenge. We set the uncertainty to be ±1%
relative uncertainty of jet transverse momentum and related quantities. Typical systematic
uncertainties of that kind vary in ATLAS analyses from 1% to 4%.

3.2. Performance of saBDT
In figure 2 the AAMS of the saBDT can be seen depending on λCut and λBoost at the same
time. For small values of both parameters the AAMS increases, afterwards it falls off. This
shows that the method works, even when both systematic controlling mechanisms are combined.
Both parameters behave as expected; when increasing the penalty parameters, the systematic
effects are reduced, although it also leads to a performance loss for larger penalty parameter
values. The maximum AAMS is found to be at (λCut, λBoost)=(0.001,2). Performing an error
analysis with the Bootstrap method [8] we find that the chance of this result being a statistical
fluctuation is 17.9%.

3.3. Influence of strength of systematic effect
All prior analysis was done with a single systematic effect strength. Its value of 1% was chosen
to be rather low. In table 1 the gain in AAMS using the saBDT compared to a standard BDT
is shown versus the systematic effect strength. The improvement due to the saBDT increases
with increasing systematic strength. With small systematic effect the AAMS is dominated by
the statistical error and therefore a mitigation of the systematic error does not result in a large



Figure 2. AAMS for different values of λCut and λBoost.

Systematic Variation BDT (AAMS) saBDT (AAMS) % prob for stat. fluc.
20% 1.07±0.05 1.52±0.06 1.6%
10% 1.38±0.06 1.94±0.07 0.4%
3% 2.40±0.09 2.64±0.09 7.7%
1% 3.13±0.11 3.23±0.10 17.9%

Table 1. Achieved AAMS for a standard BDT and the saBDT for different strength of
the systematic effect as well as the probabilty for the improvement being due to a statistical
fluctuation.

gain. In case the systematic effect is large, the AAMS is dominated by the systematic error.
The saBDT is able to mitigate this dominating factor and makes the loss in general performance
neglectable. Therefore we conclude that the saBDT is better suited for use in areas dominated
by larger systematic uncertainties.

3.4. Comparison between saBDT and AdvANN
In figure 3 the AAMS results for the optimal saBDT and the optimal AdvANN are shown.
Despite the curves peaking at different cut points both methods achieve similar results. The
saBDT has a slight advantage and is able to achieve an AAMS of 3.23± 0.10 in comparison to
3.08± 0.11 for the AdvANN (compared to 2.88± 0.09 for the regular ANN). No final statement
can be made regarding which method works better. The saBDT may perform better in this
study because the AdvANN is not as well-tuned, as indicated by the fact that the performance
of the non-adversarial neural network is worse than the standard BDT.

As shown in [2] a well tuned ANN is expected to achieve a similar performance as a BDT.
Therefore the worse performance of the AdvANN in AAMS could be the result of the non-ideal
tuning of the AdvANN. To get a clearer comparison between both methods more work has to
be spent on optimizing both methods.

4. Conclusion
We present a new method to include systematic uncertainties in the training of BDTs, called
saBDT. The saBDT performance is evaluated based on data of the ATLAS machine learning
challenge equipped with a jet energy scale uncertainty. We find that for a large enough systematic
variation the results of the saBDT are significantly better than those of a standard BDT. A



Figure 3. AAMS for saBDT and AdvNN vs cut value.

comparison to an adversarial neural net yields similar results but more studies are needed to
determine which method works better.

Nevertheless this is overall a promising result as it shows the capabilities of BDTs. Being the
most frequently used multivariate method at the LHC, it is a good sign that BDTs can still be
improved and that they are capable of adapting to different tasks.
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