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Abstract. During the second phase upgrade program developed for LHC and its experiments,
the main hadronic calorimeter of ATLAS (TileCal) will replace completely its readout
electronics, but the optical signal pathway and detector will be kept unchanged. During
the R&D studies for the upgrade, initial analyses for improving the calorimeter granularity
were made. A granularity improvement could be achieved through the introduction of Multi-
Anode Photomultiplier Tubes (MA-PMTs) into the calorimeter readout chain, together with
applications of image processing algorithms for identifying sub-regions on calorimeter cells. This
paper presents the latest results from using a Generative Adversarial Network (GAN) to generate
synthetic images, which simulate real images formed in the MA-PMT. After the classification
of cell sub-regions, preliminary results show a classification accuracy of more than 98% on the
experimental test set.

1. Introduction
The Large Hadron Collider (LHC) accelerates and collides proton beams at an event rate of
40 MHz, with up to 13 TeV of center-of-mass energy. ATLAS [1] is the largest LHC detector,
and it was designed as a general-purpose particle detector to study the extensive LHC physics
program; going from the search of the Higgs boson, to the search for extra dimensions and dark
matter particles.

LHC and its experiments have been developing an extensive upgrade program, which is split
into two phases: Phase-I, going from 2019 to 2020, and Phase-II that will occur between 2024
and 2026. During the Phase-II upgrade, the main hadronic calorimeter of ATLAS (TileCal) [2]
will redesign its front-end and back-end electronics, leaving the detector and optics unchanged.
During the initial R&D studies for the TileCal Phase-II upgrade, a study was developed to
improve the detector granularity by modifying only the calorimeter readout, without changing
its mechanical structure. Particle jets with high transverse momentum tend to deposit their
energies in the outer layers of TileCal. Therefore, dividing the actual calorimeter cells into
new sub regions would improve the reconstruction of momentum, mass, transverse energy and
angular position of those jets, allowing future analysis benefits from a finer-grained granularity
detector.

This paper introduces a deep learning method to address the granularity improvement in
TileCal. The method combines the use of generative adversarial models to create new synthetic



data in order to leverage the statistics, together with a classification algorithm used to assign
each event to a particular topological region of the detector. We propose to use a variant of a
Generative Adversarial Network (GAN) [3], in order to simulate the interaction of particles
within a calorimeter cell, and, thereafter, leveraging the amount of statistics for the final
classification model development. A variety of GANs has been used in the physics community
to create fast experiment simulation in several analyses, like simulation for particle showers [4]
and convergence maps in cosmology [5].

In this paper a variant of a GAN model based on a deep neural network (DCGAN) [6] is
used to obtain a substantial increase in the statistics of the physical process being studied.
Those synthetic events feed a supervised deep learning approach based on Convolutional Neural
Networks (ConvNet) [7], which will be used for mapping the signal image information onto two
regions from a particular calorimeter cell.

This paper is organized as follows. Section 2 describes the ATLAS calorimetry system, while
Section 3 addresses possible improvement in the TileCal granularity even keeping unchanged
its mechanical structure. The preliminary results of the proposed algorithm are presented in
Section 4, and conclusions are derived in Section 5.

2. The Tile Calorimeter
The ATLAS calorimeter system is split into two detectors, the Liquid Argon (LAr) Calorimeter,
which is responsible for measuring the energy of electromagnetic particles, and the Tile
Calorimeter (TileCal), which measures the energy of hadronic particles. Both calorimeters are
segmented in depth into layers, with fixed granularity (number of cells per layer). A schematic
view of the ATLAS calorimeters together with a TileCal sketch is shown in Figure 1.

(a) (b)

Figure 1: ATLAS calorimeters (left). TileCal cell layout (right).

TileCal consists of one Central Barrel (LB) and two Extended Barrels (EB) that together
cover a pseudo-rapidity region of |η| < 1.7 with each cylinder segmented into 64 modules.
TileCal is a sampling calorimeter and each cell is made of alternating layers of iron plates and
scintillating tiles. The scintillating tiles are readout by wave-length shift fibers, which deliver
the light to a Photomultiplier Tube (PMT) placed in the outer radius of the iron structure.
Each PMT reads the signal from several tiles that are grouped into cells of different sizes,
depending on their radius and pseudo-rapidity. The calorimeter modules are segmented into
three longitudinal layers (A, BC and D), as shown in Figure 1b, with each of their cells having
a transverse segmentation of ∆η × ∆φ = 0.1 × 0.1 (0.2 × 0.1 in the outer D layer). Together
with the electromagnetic calorimeter, TileCal provides precise measurement of hadrons, jets,
taus and missing transverse energy.



3. Granularity Improvement Method
Aiming at extracting additional information on the spatial distribution of the energy deposited
within each cell, the original TileCal PMT, Hamamatsu model R7877, may be substituted by a
Multi-Anode Photomultiplier Tube (MA-PMT), Hamamatsu model R7600-300-M64, which has
64 photo sensors distributed in a grid of 8× 8 pixels, in this particular case. To make detector
granularity improvement feasible, an algorithm has to be developed to match a given image
pattern formed in the grid of pixels to a topological sub region within a given cell.

As mentioned in Section 1, jets with high transverse momentum tend to deposit energy deeper
into TileCal. For a jet with pT > 3 TeV, on average, 50% of energy sampled by TileCal will
be deposited within the BC layer. Therefore, splitting the BC layer into two separate layers,
B and C, would help physicists to gain more information on the longitudinal shower profile of
particles, and improve angular position measurements and jet energy resolution.

3.1. Calibration Data
To create the target mapping from a particular image pattern collected by the MA-PMT grid
of pixels, we will use data from the Cesium calibration system taken during the Cs scan runs
[8]. The Cs source system consists of a radioactive source of Cesium-137, which moves through
the calorimeter by means of a hydraulic system, in order to calibrate the optical components of
TileCal.

During the Cs scan, the readout electronics acquire simultaneously integrated currents from
one channel connected to the single anode PMT and 48 channels connected to the new MA-
PMT readout. In other words, both PMTs, single and multi-anode, are connected to the same
calorimeter cells from different sides. Therefore, as the Cs source moves along the cell, performing
sequential excitation of every tile, one can order the time-dependent response curves of each
individual tile with respect to the images produced by the MA-PMT grid of pixels.

To identify images generated from B and C cells, we used the information about the
geometry of the detector alongside with the time response curves produced during the Cs scan.
Experimental data acquired comprises 1, 647 images from the B (sub-cell) and 1, 951 entries
for the C (sub-cell). Despite being time consuming and demanding a significant amount of
manpower, the Cs scan through TileCal cells results in a limited number of images, which
makes deep learning development difficult to be accomplished. Recent developments in deep
generative adversarial models, such as [4] and [5], could solve this issue.

3.2. Generative Adversarial Networks (GANs)
The generative model will be developed for increasing the statistics. The GAN approach is
based on two deep neural networks that compete with each other. The first network is called
the Generator, and its objective is to learn the mapping x = G(z; θg), over the data x, where θg
are the network parameters and z is an input vector containing just noise. The second network
is called the Discriminator and has a mapping D(x; θd), which represents the probability of the
data x being real or generated by the G network. The Discriminator is trained to minimize the
following cross-entropy cost function, where Ex and Ez are the expected values for the vectors
x and z, respectively:

JD = −1

2
Ex∼pdata logD(x)− 1

2
Ez log(1−D(G(z))).

We found that the primary DCGAN architecture, used by the original authors, performs well
in the MA-PMT images with a few modifications on the size of filters and kernels. These network
parameters had to be modified to match the size of our 8× 8 images. In the Generator network,
we have three convolutional layers with 128, 64 and 1 filters, respectively. All the convolutions



use symmetric kernels with size 3 and strides 1. The Rectified Linear Unit (ReLU) [9] activation
is used for all except the output layer, which uses a hyperbolic-tangent function.

The Discriminator has four convolutional layers, activated with LeakyReLU [10] with
parameter α = 0.2, and one dense layer as output with a sigmoid function. The first two
convolutional layers have 32 and 64 filters, respectively, with symmetric kernels of size 3 and
strides 2. The last two convolutional layers have 128 and 256 filters, with symmetric kernels
with size 3 and strides 1. To train the adversarial network, the Adam [11] optimizer was used,
with learning rate 0.0002 and β1 = 0.5, as suggested by the original paper. To avoid model
instability, batch normalization is used for all except the first layer of the Discriminator and the
output layer of the Generator model.

4. Results
The DCGAN was trained for each sub-cell, B and C, separately. After the training process, the
Generator model was used to produce 100, 000 synthetic images used for the analysis.

4.1. Similarity Measure
After the generation process, all the images, real or synthetic, were converted to 8-bit grayscale
images, with pixel intensity in the interval [0, 255], in order to be compared. Figure 2 shows
the average pixel intensity for both real and synthetic images, alongside with its relative error,
compared pixel per pixel. The largest difference from the average images is around 11% for the
B sub-cell and 14% for the C sub-cell.

The relative differences between real and synthetic images (Figure 3) also show that the GAN
was able to reproduce the discriminating pattern between the B and C sub-cells.

4.2. Sub-Cell Classification
For the sub-cell classification, we trained the ConvNet using the synthetic data and test it with
the real images obtained during the Cs scan data acquisition which were not used for training
the generator model, in order to make the test set statistically independent from the training
set.

The ConvNet architecture has only one convolution layer, with max pooling operation,
followed by dense layers and an output layer. The activation function was ReLU for all layers,
with exception of the output layer which has a sigmoid function. The ConvNet was trained with
the Adam optimizer for 5 epochs.

A training accuracy of 0.9886± 0.0027 was obtained for the training set (synthetic images),
which was slightly reduced to 0.9861 for the test set (real images). Table 1 shows the classification
accuracy results. The model was able to correctly predict all the images corresponding to the
B sub-cell and missclassified only 2.5% of the C sub-cell.

Table 1: Accuracy for the test set.

Predicted B sub-cell Predicted C sub-cell

True B sub-cell 1647 0
True C sub-cell 50 1901



160.94 196.64

156.34 170.85 171.70 175.90 190.19 172.88

188.02 169.24 185.35 181.27 175.92 202.56 167.28

162.48 173.82 174.58 173.11 186.04 199.38 187.41 176.85

147.07 160.96 162.63 160.59 196.58 164.22 174.63 166.87

181.60 163.83 173.94 161.09 176.05 178.49 169.67

171.68 171.28 162.89 183.32 163.21 159.31

158.43 153.37

[x pixels]

[y
 p

ix
e

ls
]

150

160

170

180

190

200

210

P
ix

e
l 
In

te
n

s
it
y

Preliminary ATLAS

Tile Calorimeter
     B Subcell

   Real Images

(a)

­0.07 ­0.06

­0.09 ­0.07 ­0.07 ­0.07 ­0.09 ­0.06

­0.07 ­0.04 ­0.08 ­0.07 ­0.11 ­0.06 ­0.04

­0.06 ­0.05 ­0.05 ­0.07 ­0.06 ­0.07 ­0.07 ­0.06

­0.06 ­0.04 ­0.04 ­0.06 ­0.07 ­0.08 ­0.08 ­0.06

­0.05 ­0.05 ­0.05 ­0.06 ­0.06 ­0.08 ­0.08

­0.05 ­0.05 ­0.06 ­0.06 ­0.08 ­0.10

­0.06 ­0.07

[x pixels]

[y
 p

ix
e

ls
]

0.1−

0.05−

0

0.05

0.1

Preliminary ATLAS

Tile Calorimeter Real

(Real ­ Synthetic)

(b)

172.72 208.68

170.47 182.68 184.26 188.27 206.90 183.31

200.92 176.23 199.78 193.74 194.41 214.42 174.81

172.91 181.96 183.66 184.99 197.57 212.82 201.31 188.34

155.40 167.62 168.41 170.24 209.72 177.05 188.64 176.79

191.44 171.82 183.08 170.21 187.46 191.95 183.74

180.67 180.62 172.02 194.85 176.02 175.32

167.15 163.96

[x pixels]

[y
 p

ix
e

ls
]

150

160

170

180

190

200

210

P
ix

e
l 
In

te
n

s
it
y

Preliminary ATLAS

Tile Calorimeter
     B Subcell

Synthetic Images

(c)

172.63 191.33

175.55 190.18 196.61 169.50 176.63 166.44

193.29 174.58 195.92 177.26 158.49 185.61 170.13

171.08 181.32 190.50 197.79 192.79 183.29 172.82 178.60

154.87 169.53 175.92 184.66 222.85 184.37 177.37 170.41

190.91 172.40 183.39 175.59 205.17 204.52 188.80

180.56 180.20 171.98 195.41 179.29 168.78

166.67 161.63

[x pixels]

[y
 p

ix
e

ls
]

160

170

180

190

200

210

220

230

P
ix

e
l 
In

te
n

s
it
y

Preliminary ATLAS

Tile Calorimeter
     C Subcell

   Real Images

(d)

­0.01 ­0.02

­0.11 ­0.10 ­0.07 ­0.03 ­0.05 ­0.06

­0.12 ­0.06 ­0.07 ­0.04 ­0.07 ­0.04 ­0.06

­0.08 ­0.08 ­0.07 ­0.07 ­0.05 ­0.06 ­0.04 ­0.05

­0.08 ­0.08 ­0.05 ­0.05 ­0.05 ­0.04 ­0.06 ­0.07

­0.06 ­0.07 ­0.07 ­0.04 ­0.05 ­0.07 ­0.08

­0.09 ­0.10 ­0.10 ­0.10 ­0.05 ­0.14

­0.09 ­0.10

[x pixels]

[y
 p

ix
e

ls
]

0.1−

0.05−

0

0.05

0.1

Preliminary ATLAS

Tile Calorimeter Real

(Real ­ Synthetic)

(e)

174.68 194.38

195.53 210.09 209.58 174.38 185.85 175.70

215.65 185.83 209.03 185.21 169.10 193.75 179.68

185.46 196.67 204.38 211.92 201.97 193.74 179.98 187.54

166.59 182.65 184.80 194.25 234.01 192.24 187.38 182.88

202.34 184.72 195.93 182.15 214.92 218.27 204.71

197.65 198.99 189.81 214.01 188.89 191.62

182.01 178.44

[x pixels]

[y
 p

ix
e

ls
]

160

170

180

190

200

210

220

230

P
ix

e
l 
In

te
n

s
it
y

Preliminary ATLAS

Tile Calorimeter
     C Subcell

Synthetic Images

(f)

Figure 2: Average [pixel intensities] for real (left) and synthetic (right) images alongside with its
relative difference (center). The first row shows the result for the B sub-cell, while the second
row shows the results for the C sub-cell.
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Figure 3: Relative differences (discriminating pattern) between B and C sub-cells for real (left)
and synthetic (right) images.



5. Conclusions
Results of the recent efforts, based on the R&D studies to improve the TileCal granularity for
the high luminosity regime of the LHC (HL-LHC) were shown. After splitting the BC cell into
two separate sub-cells, we used deep learning methods to tackle the problem from a supervised
perspective. First, increasing the statistics with simulation generated by an adversarial model,
and then performing a binary classification algorithm based on deep neural networks.

The combination of the techniques, GANs and ConvNets, made it possible to look at the
improvement of granularity in TileCal as a supervised learning problem. The first results of
the binary classification showed a 98% accuracy in the test set, an improvement of around 26
percentage points when compared with a CNN trained only in real data. This method showed
the possibility of increasing the actual longitudinal granularity of the BC cell by a factor of two,
without changing the mechanical structure of the detector.
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