
Nested data structures in array frameworks

Jim Pivarski, David Lange, and Peter Elmer

Princeton University, Princeton, NJ 08544, USA

E-mail: pivarski@princeton.edu, david.lange@cern.ch, peter.elmer@cern.ch

Abstract. The need for nested data structures and combinatorial operations on arbitrary
length lists has prevented particle physicists from adopting array-based data analysis
frameworks, such as R, MATLAB, Numpy, and Pandas. These array frameworks work well for
purely rectangular tables and hypercubes, but arrays of variable length arrays, called “jagged
arrays,” are out of their scope. However, jagged arrays are a fundamental feature of particle
physics data, as well as combining them to search for particle decays. To bridge this gap, we
developed the awkward-array library, and in this paper we present feedback from some of the
first physics groups using it for their analyses. They report similar computational performance
to analysis code written in C++, but are split on the ease-of-use of array syntax. In a series
of four phone interviews, all users noted how different array programming is from imperative
programming, but whereas some found it easier in all aspects, others said it was more difficult
to write, yet easier to read.

1. Structure of data in particle physics
Data analysis software intended for data scientists in industry and academic fields other than
particle physics is mostly designed for simple data that must be cross-correlated in complex
ways. By contrast, particle physicists deal with independent events, such as particle collisions,
decays, or cosmic rays, which can each be fully analyzed in isolation, though the analysis of each
event may be very complex. This allows more freedom in parallel processing, but physicists
must run more specialized programs in those parallel jobs. Physicists usually solve this problem
by writing imperative code in a general purpose programming language, typically C++, as the
first step in their data analyses.

There is much to be gained from higher level analysis tools, but they can’t be used if they
do not represent and provide operations for complex data. By “complex data,” we mean:

• collections of variable length arrays, to represent arbitrary numbers of particles per event
and similar structures, including variable length arrays inside variable length arrays;

• nested record types for particle objects;

• cross-linked data, such as pointers from composite jets to the tracks that comprise them;

• nullable data, such as parameters that are relevant for some kinds of events but not others.

All of these are easy to deal with as simple numerical types except the first, known as
“jagged arrays.” Nested record types, such as a lorentzvector field containing objects with
pt, phi, and eta fields, could be thought of as a naming convention, as field names that include
dots: lorentzvector.pt, lorentzvector.phi, and lorentzvector.eta. Cross-linked data
can be—and frequently are—represented as integers indicating positions in another collection



muons = [

[Muon(31.1, -0.481, 0.882), Muon(9.76, -0.124, 0.924), Muon(8.18, -0.119, 0.923)],

[Muon(5.27, 1.246, -0.991)],

[Muon(4.72, -0.207, 0.953)],

[Muon(8.59, -1.754, -0.264), Muon(8.714, 0.185, 0.629)],

...

]

pT 31.1, 9.76, 8.18, 5.27, 4.72, 8.59, 8.714

phi -0.481, -0.123, -0.119, 1.246, -0.207, -1.754, 0.185

eta 0.882, 0.924, 0.923, -0.991, 0.953, -0.264, 0.629

counts 3, 1, 1, 2

offsets 0, 3, 4, 5, 7

starts 0, 3, 4, 5

stops 3, 4, 5, 7

parents 0, 0, 0, 1, 2, 3, 3

Figure 1. Example of arbitrarily many muon records per event (top code snippet) and their
representation as content arrays (pT , phi, eta, bottom table) and structure arrays (counts,
offsets, starts and stops, or parents, bottom table).

(i.e. relational normalization with array index position as the surrogate key). Null values in data
could, if necessary, be indicated by dummy values like −1000, so jagged arrays need the most
attention.

2. Jagged arrays and the awkward-array library
Jagged arrays can be represented in flat arrays without padding or truncation by separating
the content from the structure. Figure 1 shows the deconstruction of several muon objects per
event as an example. Each nested record has three fields, which can be placed in separate arrays
because nested records are essentially a naming convention. The structural part, the fact that
the first event has 3 muons, the second has 1, the third has 1, and the fourth has 2, could be
recorded in a separate counts array. The cumulative sum of counts, called offsets in the
Figure, is more practical because it permits random access: to get the third event (index 2), we
only have to query offsets[2], which is 4. The content for this event starts in the pt, phi,
and eta arrays at index 4.

This “columnar” form of the data structure allows some operations to be more efficient than
they would be in a serialized (e.g. std::vector<std::vector<Muon>>) or indirection-based (e.g.
std::list<std::list<Muon>>) form. For instance, if the offsets are expressed as starts =

offsets[:-1] and stops = offsets[1:], dropping all but the first and second particle in each
event becomes a matter of reassigning stops = min(stops, starts + 2). Operations that
reduce the structure of the jagged array, such as selecting the best particle per event, require
indexes pointing from the inside out, rather than outside in: the parents array associates each
content value with the event to which it belongs.

Any of these structure arrays can represent the jagged dataset, so a library named awkward-
array [3] was developed to manage JaggedArrays as a class with similar properties to Numpy’s
ndarray. The awkward-array library handles all of the data structures physicists regularly use—
nested records, cross-linked tables, nullable data—but jagged arrays are its primary application.
The design of this library is more fully described in our previous paper[4].



2016 Mar May Jul Sep Nov 2017 Mar May Jul Sep Nov 2018 Mar May Jul Sep Nov 2019 Mar May
30-day moving window

10 1

100

101

102

103

n
u
m

b
e
r 

o
f 

d
o
w

n
lo

a
d

s 
p

e
r 

d
a
y

pip-installations on Scientific Linux distributions

numpy

matplotlib

pandas

uproot

awkward

numpy

matplotlib

pandas

uproot awkward

Figure 2. Download rate (30-day window-averaged pip installations per day) of scientific
Python libraries on Scientific Linux machines (almost exclusively used by physicists).

The awkward-array library is used by particle physicists; we know this from individual cases
(described later in this paper) and in the pattern of download statistics. Figure 2 shows pip-
installations on computers whose operating system has “Scientific” in its name—variants on
CERN and Fermi Scientific Linux. Most of these are batch and login machines for particle
physicists, so the download rate is driven by distributed analyses. This rate sometimes spikes
for large jobs, so we smooth it with a 30-day window. In the time series, we see a steady increase
in uproot [2] usage (reads ROOT [1] data as arrays) that might be driving a slight increase in
Numpy, Matplotlib, and Pandas on these systems. The download rate of awkward-array closely
tracks that of uproot, starting when it became a dependency of uproot in version 3.

As we can see from the close tracking of uproot and awkward-array, nearly all awkward-array
installations are through the uproot dependency. Some users might not even be thinking of them
as separate libraries: uproot functions return awkward-array objects, primarily JaggedArrays

and jagged TLorentzVectorArrays (which is actually defined in another dependency: uproot-
methods). Although the download statistics do not reveal how many users are performing
non-trivial jagged array operations in their analyses, we are working with a few physicists who
do use these operations intensively and are pushing the boundaries of what is possible in a purely
columnar analysis.

3. Coffea: awkward-array in two CMS analyses
Coffea is a collaboration of physicists [7] performing two CMS analyses: a dark Higgs search and
a boosted Standard Model Higgs → bb̄. The dark Higgs search is being developed exclusively in
awkward-array operations, without call-outs to custom C++ code or Python for-loops over the
set of events, and the boosted Higgs is being analyzed in two parallel tracks, one using awkward-
array and the other using conventional tools in C++. This group is also building specialized
software on top of awkward-array for energy corrections, histogramming, and distributed scale-
out.

Although the two analyses targeted for publication are still in development, Nick Smith
also performed a demonstration of a Z mass analysis. The Z mass can be considered the
“hello world” of collider physics in that it requires minimal but non-trivial combinatorics:
distinct pairs of oppositely charged muons must be combined to form Z boson candidates.
This particular analysis goes beyond a single plot in that it has many realistic corrections—
selection of good luminosity blocks, pile-up, ID scale factors, and flavor categorization. The
analysis was performed separately in a Jupyter notebook using awkward-array and in a compiled



Figure 3. Breakdown of wall time spent in an awkward-array Z mass measurement.

C++ program; see the online repository [6]. Both versions are expressed in approximately
the same number of lines (350 for awkward-array plus plotting, 400 for C++ with auto-
generated boilerplate) and executes in about the same length of time, within a factor of 1.5
(6 µs/event/thread for awkward-array, 4 µs/event/thread for C++). However, the array analysis
requires more care to align indexes—a focus on combinatorics—while the C++ analysis requires
more care to avoid segmentation faults and stale data—which are irrelevant to the analysis.
Both analysis programs read the same 25 columns of data from the same ROOT files (about
200 GB in 8 files). Figure 3 shows a break-down of how wall time was spent.

The dark Higgs and boosted Higgs analyses are more complex, but preliminary versions of
these analyses run at 70 µs/event/thread and use about 100 columns of data. Like the Z mass
demonstrator, a large part of the execution time is spent decompressing columns with LZMA—
less aggressive compression schemes like LZ4 would be a benefit. Also, it’s worth noting that
these complete analyses use about 10% of the 1000 columns provided by the collaboration as
minimal (1 kB/event) NanoAOD [5], as well as a handful of columns not provided by NanoAOD,
which the analysts had to generate. This agrees with our expectation that different analysis
groups use a core of common columns (100 bytes/event) with a long tail of particular columns.

4. User experiences with awkward-array
Although the comparison of array-based and C++ analyses is instructive, it doesn’t tell us
about the user experience of writing these scripts. For this, we conducted qualitative interviews
with the data analysts. All interviews were conducted audio-only over Skype and were strictly
a half-hour in length. The participants had each developed a substantial part of an array-based
analysis, but were users, not developers, of the Coffea framework tools—we are interested in the
experiences of users with physics goals and not too much insider knowledge of the awkward-
array framework. Three of the participants work on projects related to Coffea and one used
awkward-array in the development of a future dark matter direct detection experiment.

Four participants is not a broad statistical sample, but they do represent a range of physics
experience: 1 is a graduate student, 2 are postdocs (1 beginning, 1 advanced), and 1 is an
advanced researcher. Most of their programming experience was in C++, from 5 years to
decades), and all had some experience with Python: 6 months to 3–4 years. Most of that
Python experience was focused on PyROOT, the Python interface to ROOT. Very few had
any experience with Numpy: they ranged from 2 to 5 months, and nearly all of that Numpy
experience was through awkward-array.

The participants had different reasons for using awkward-array: some were motivated by
fast execution in Python, while others primarily cared about ease-of-use. The following are
representative quotations from the interviews:



• “Thirty minutes is too long to wait for a plot.”

• “This will be run order-of-magnitude a hundred times over the course of the year; this is
a big investment.” And yet, “For something that could be two times faster, I wouldn’t do
these optimizations.”

• “Ease-of-use is paramount; I’ve always struggled with poorly written code.” And “Making
it fast to run it again and again is going around ease of use.”

• “Ease-of-use is most important, even if execution speed decreases.”

Some of the participants found the array-based approach easier than the equivalent loops,
but all noted that it is very different, not a mere translation of syntax.

• “Way, way much easier than applying cuts with for loops.”

• “I was surprised by how conceptually different you have to think about selections, combining
objects.” But “Not good or bad, just surprising that it has a learning curve.”

• “Individual problems have been much more difficult than expected.” And “Translating ‘if’
statements is where I get hung up.” But “Not inherently harder; just harder now for those
of us used to the ‘for’ loop version.”

One point came up multiple times, unprompted: that the array expressions are easier to read
than to write.

• “The good thing is, once you figure it out, it’s clear why it works. It’s not magic, you just
have to get the mapping right.”

• “If I ask a student to read my code, he’ll be able to read it. But five minutes later, he’ll
try something similar and it won’t work.”

5. Conclusions
The jagged array data structure described in previous reports is now in widespread use, as a
dependency of uproot. At least two CMS analyses are using awkward-array and its operations
directly, and they find that they can work entirely in Python without a significant loss of
performance. However, they find the array syntax surprising and are split on whether it makes
analysis easier to develop or simply faster to run, but all of the participants interviewed had
minimal familiarity with Numpy, on which the syntax is modeled. It would be interesting to
know how new graduate students, without prior experience in C++ or imperative programming,
take to the array-based paradigm.

6. Acknowledgments
This work was supported by the National Science Foundation under grants ACI-1450377 and
PHY-1624356.

References
[1] Rene Brun and Fons Rademakers. {ROOT} an object oriented data analysis framework. Nuclear Instruments

and Methods in Physics Research Section A, 389(12):81 – 86, 1997. New Computing Techniques in Physics
Research V.

[2] Jim Pivarski et al. uproot [software]. [software], 2017.
[3] Jim Pivarski et al. awkward-array [software]. [software], 2018.
[4] Jim Pivarski, Jaydeep Nandi, David Lange, and Peter Elmer. Columnar data processing for hep analysis. In

European Physical Journal Web of Conferences, volume ???, ??? 2019.
[5] Andrea Rizzi and Giovanni Petrucciani. A further reduction in CMS event data for analysis: the NANOAOD

format. In European Physical Journal Web of Conferences, volume ???, ??? 2019.
[6] Nick Smith. zpeak.ipynb and zpeak.h/c [analysis examples]. [software], April 2019.
[7] Nick Smith, Lindsey Gray, Matteo Cremonisi, Bo Jayatilaka, Oliver Gutsche, Allison Hall, Kevin Pedro

(Fermilab), and Andrew Melo (Vanderbilt). Coffea: the case for columnar analysis [presentation]. HOW:
HSF, OSG, WLCG workshop, March 2019.


