Hardware Accelerated ATLAS Workloads on the
WLCG Grid

A C Forti!, L Heinrich? and M Guth3

1 School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester, M13
9PL, UK.

2 CERN (European Laboratory for Particle Physics), Rue de Geneve 23 CH 1211 Geneva,
Switzerland.

3 Albert Ludwigs Universitit Freiburg, Friedrichstr. 39, 79085 Freiburg im Breisgau, Germany.

Abstract. In recent years the usage of machine learning techniques within data-intensive
sciences in general and high-energy physics in particular has rapidly increased, in part due to
the availability of large datasets on which such algorithms can be trained, as well as suitable
hardware, such as graphic or tensor processing units, which greatly accelerate the training and
execution of such algorithms. Within the HEP domain, the development of these techniques
has so far relied on resources external to the primary computing infrastructure of the WLCG
(Worldwide LHC Computing Grid). In this paper we present an integration of hardware-
accelerated workloads into the Grid through the declaration of dedicated queues with access to
hardware accelerators and the use of Linux container images holding a modern data science
software stack. A frequent use-case in the development of machine learning algorithms is
the optimization of neural networks through the tuning of their Hyper Parameters (HP). For
this often a large range of network variations must be trained and compared, which for some
optimization schemes can be performed in parallel — a workload well suited for Grid computing.
An example of such a hyper-parameter scan on Grid resources for the case of flavor tagging
within ATLAS is presented.

1. Introduction

The increase in dataset size and computing resource requirements for the HL-LHC is pushing
WLCG experiments to look at Machine Learning (ML) techniques to improve the efficiency
of data analysis and processing [1]. ML software is better suited to run on GPUs (Graphics
Processing Unit), a type of hardware usually not available on shared resources and which ML
users have difficulties accessing. Having them on the Grid would increase the ability of users
and developers to test and improve the ML techniques. In this context there are three aspects
we’d like to show

e ML software is not part of the more traditional LHC experiments software stack and is not
distributed to sites. We solved this problem by using ML containers that can be easily built
by the users themselves.

e Due to the usually parallel tightly coupled nature of the code running on GPUs, GPUs
brokering has always been considered as an intractable problem. We can identify classes
of loosely coupled ML jobs that can already be submitted using similar brokering rules to
those we use already. This work can be used as an initial step towards more complicated
workflows that we might be able to run on HPC resources.

e The neural network b-tagging algorithm, used by ATLAS, we present is an example of how
new and improved ML algorithms can be adapted to be brokered to grid resources.

2. User containers
Running ML jobs requires custom software like Python3 and TensorFlow [2], which is not part
of the default OS installation or of the usual experiment stack that is distributed to sites. This
makes it difficult to run these jobs on the Grid without a large organisational effort.

To ease this problem, ATLAS has worked on integrating containers in the pilot infrastructure.
In particular, we introduced a mechanism to run user-defined containers [3] which can run in
a standalone manner. These type of containers offer isolation from the host environment, and
the advantage to the users is that they can build the images containing all the software the
application needs without having to rely either on the system administrators to install it or the
experiment to distribute it. The advantage of using Docker [4] to build these images is that
there is a vast repository of official images already built containing ML software, and users have
just to customise it and add their own application on top of it by writing a Dockerfile, an image
definition file. Figure 1 shows a simple Dockerfile to add a ML user application layer on top
of the TensorFlow image from the official Docker library. The ATLAS ML group is now also
providing base images for ATLAS users.

FROM tensorflow/tensorflow: latest—gpu-py3

ENV LANG C.UTF-8

RUN pip install keras && \
pip install uproot && \
pip install jupyter && \
pip install matplotlib && \
pip install papermill && \
mkdir /afs

RUN apt-get update && apt-get install -y nano

COPY . /btagging
WORKDIR /btagging

Figure 1. Example of Dockerfile. Users can easily build on top of official
images.

3. GPU drivers and libraries
Software like TensorFlow can run in a heterogenous environment, and even if there are GPUs
on the host, it will fall back on running on CPUs if it cannot properly access the former. To
run on GPUs the application in the container has to be able to access the devices and load
the GPU drivers which are vendor and model dependent. Singularity [5], the container runtime
of choice on the Grid, can be configured to do this automatically. In most cases it is just a
matter of adding a list of libraries to a configuration file, but at some sites this might be more
complicated. For example, as well as being added to the container runtime configuration, the
libraries might have to be explicitly preloaded by each job before it starts.

Since each site will have a slightly different configuration and the software may silently fall
back to running on CPUs, therefore wasting resources, we created some simple test containers

which detect if the GPUs exist and if they are correctly configured for the containerised
applications to use them. These images can be used either by the system administrators or
by ATLAS operations when setting up nodes and queues to access them. In the future ATLAS
will use such simple images to verify that sites are functional as part of its testing infrastructure.

4. Enabling GPUs on the WLCG Grid
The WLCG distributed resources have been built around the HTC (High Throughput
Computing) paradigm that focuses on the efficient execution of a large number of loosely-coupled
tasks. The environment has been traditionally uniform, not only at OS and software levels but
also at the hardware level with most computing centres adopting Intel CPUs. The software and
algorithms it was built for are essentially sequential and can run on commodity hardware.
GPUs, by contrast, are designed to process parallel code, possibly be used as co-processors,
i.e. only part of the code is offloaded on them, and therefore might have much more complicated
requirements when they are to be used by a batch job. As we will show though, there are some
categories of ML workflows that run on GPUs and can be adapted to the HT'C model.

5. Sites setup and brokering

Traditionally, loosely coupled tasks have been handled by splitting them into independent jobs
that could run anywhere. In batch system terms, each job occupies a slot, each slot has a
determined set of resources allocated to it. The easiest way to put online GPU resources so far
has been by maintaining the same principle, in this case one GPU slot per node. Sites enforce
such constraints either by virtualizing the worker nodes using VMs bound to a fixed amount
of resources that will always be allocated when a GPU is requested, or, more recently by using
cgroups, a linux kernel feature to control resources, to impose similar limitations. With this
setup we could broker jobs to GPU resources at multiple sites with two simple tweaks to the
system:

e Adding a selectable vendor nvidia-gpu label to select the queues. Jobs can run on any
nvidia GPUs that are accessible.

e Avoid standard jobs being brokered to GPU resources. In the ATLAS workflow sites only
see pilot jobs sent by the same production user. They cannot distinguish a pilot job that
will request a GPU payload from a pilot that will request a standard payload. It’s up to
the experiment to broker the correct pilots to the GPU resources.

77777777777777777777777

,,,,,,,,,,,,, E — - - = = =
e
sica | g
1
Rnnn NN = RN !
afafefegefepefeefefefeel 3-icfefafefejops
, ' :
NN configs Training Validation Site B | 0 . | !
I

Figure 2. Neural net input and job splitting over multiple Grid sites

6. b-tagging Hyper Parameter optimization

Some workloads are more suited than others to run on HTC environment. The Hyper Parameter
(HP) scan, used by ATLAS for b-tagging [6], is an embarrassingly parallel workload and can
be split in several independent jobs each running on a GPU. The optimisation presented here

is set up to scan 800 combinations spanning 6 Hyper Parameters dimensions (3 layers, learning
rate, batch size and activation functions). The workload has been split in 10 jobs with 80
combinations each. Each job ran on the same training and validation data. The input files,
small JSON files containing the configuration for each combination, were replicated to the sites
with GPUs. Figure 2 shows how the task was split.

The output were also small JSON files containing the optimization values for the validation
loss for each HP combination. The smaller the validation loss the better the combination. The
results are illustrated in a parallel coordinates plot in Figure 3. Results were then verified by

ATLAS Simulation Preliminary DL1 Hyper parameter ophmisationo 73
512 48 42 relu 5000—4 0.01 — ’

4200 — 0.008 072

/ 3400 — 0.006 — —07
2600 — 0.0041 —| —0.69
1880 —| 0.0021 —

256 . 3 b 1000 0.0001 _\

4 36 tanhr

—0.68

0.66
units in 3rd layer units in 4th layer units in 5th layer activation function batch size learning rate validation loss

Figure 3. Parallel coordinates plot for 800 different Hyper Parameter
combinations. The lines show different combinations of configurations
represented in each axis. The last axis shows the neural network loss in
the validation sample for a given configuration. The red line shows the
Hyper Parameter configuration with the smallest validation loss [7].

running again the training on best, medium and worst validation loss combinations of HPs to
produce a ROC (Receiver operating characteristic) plot. The ROC curves as shown in figure 4
are calculated using the following equation:

Py
DL1y score(fe) = In) 1
bree (f) <fc *Pe + (1 - fc) ' plight-ﬂavour> ()

where py is the b-jet probability, p. the c-jet probability and piight-flavour - the light flavour jet
probability, all obtained from the network evaluation, and f. is the c-jet fraction. The fact that
the neural network has an output layer with three categories allows, besides b-jet-tagging, also
c-jet-tagging without retraining by redefining the likelihood from equation (1).

Comparing the results from the Hyper Parameter optimisation with the results from the BDT
based tagger MV2c10rnn [8], marked as red star in figure 4, we observe a great improvement
already with this simplified approach where the simplification is mainly the high batch size in
order to speed up the single trainings.

7. Conclusions

The use of GPUs in ATLAS and more generally in WLCG may increase due to the introduction
of ML and resources coming online at sites, particularly, but not only, at HPC centres. For
loosely coupled workloads, like the b-tagging HP scan presented here, users can access GPUs at
standard Grid sites already with minimal changes to their client commands. In addition, there
is ongoing work to run this workflow on larger resources at 3 HPC sites and to implement a more
sophisticated brokering to run workloads via the production system. Additionally, based on the
results presented here, work is ongoing to enable the deployment of more complex workloads,

C _I T I T T T T I T T T T I T T T T I T T T T I T T T T I T T T T I T T T
.g - * MV2c10rnn performance .
S} 180 —— HP optimisation, best result]
Q e et HP optimisation, medium result -
L 160 0 el = HP optimisation, worst result ~ —
ko) u]
= 140 . -
S SC I]
o - e]
®© 120 — ~]
= C]
% 100~ : —
= 80:— ATLAS Simulation Preliminary =
- (s=13 TeV, ff]

60— o % -

= 77% b-tagging efficiency ! .

40 p,>20 Gev and nj<2.5 ._? —

20 :r 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 I_;

4 4.5 5 5.5 6 6.5 7

c-jet rejection

Figure 4. Three ROC curves are shown for different Hyper Parameter
combinations (best, medium and worst performing). The evaluation is
done for 77% b-tagging efficiency varying the c-fraction parameter in the
calculation of the ¢ and light flavour jet rejection. The MV2c¢10rnn
performance is extracted from [8], where MV2c10rnn utilises the same inputs
as DL1 presented here and additional inputs related to soft muons [7].

such as the training of distributed generative adversarial networks (GANs)[9], developed in the
context of fast calorimeter simulation, on the ATLAS computing infrastructure.

References

Albertsson K et al. 2018 Machine Learning in High Energy Physics Community White Paper, J. Phys. Conf.
Ser. 1085, no. 2, 022008

Abadi M, Agarwal A et al. 2016 Tensorflow: Large-scale machine learning on heterogeneous distributed
systems Preprint arXiv:1603.04467

Heinrich L, Forti AC, Nilsson P and Maeno T 2019 Continuous Analysis in ATLAS: Running User-Defined
Container Images on the Grid URL https://indico.cern.ch/event/708041/contributions/3276174/

Docker URL https://www.docker.com/resources/what-container

Kurtzer GM, Sochat V and Bauer MW 2017 Singularity: Scientific containers for mobility of compute. PLoS
ONE 12(5): 0177459

Paganini M and ATLAS Collaboration 2018 Machine Learning Algorithms for b-Jet Tagging at the ATLAS
Experiment J. Phys. Conf. Series 1085 042031

ATLAS Collaboration 2019 Hyper Parameter Scan with the Deep Learning Heavy Flavour Tagger (DL1) URL
http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2019-001/

ATLAS Collaboration 2017 Optimisation and performance studies of the ATLAS b-tagging algorithms for the
2017-18 LHC run ATL-PHYS-PUB-2017-013 URL https://cds.cern.ch/record/2273281

Salamani D et al 2018 Deep Generative Models for Fast Shower Simulation in ATLAS IEEFE 14th International
Conference on e-Science Amsterdam, pp. 348-348.

