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LHC.

pp collisions at /s =13TeV
bunch collision rate — 40 MHz

2808 bunches with 115 bln protons

in each beam
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e to increase probability of
processes and production rate
to collect as much as reasonably
possible, and eliminate statistical
uncertainty of the current
measurements
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Strong interaction. Jets
e jets are collimated sprays of hadrons arising from parton level
interactions within colliding protons

e jets play important role in many physics analysises and
searches for New Physics

e QCD is being developed theory «+» effective hadron
measurement

e among main limitations is precision of calorimeter
measurement

e careful calibration, constant monitoring and maintenance, as
well as resolution improvement are important

Jets is the dominant product at LHC:

U(pp*)jEts) = Z/dxplfi/pl(xplqu)/dxpzfi/pQ(xpp/LF)Uij%jets(NRva57xp17xp2)
1,3



ATLAS experiment at LHC
e one of two multipurpose detectors

e accordeon structure

e inner tracking detectors

e electromagentic and hadronic detectors
e external muon chambers
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Hadronic Tile calorimeter

e purpose: to measure hadromic final state: hadrons, jets
kinematics, taus, Ermiss.

e principle of work: scintillating tiles (plastic) are overlaying

with absorber layer (lead)

3 cylinders: long barrel (|| < 1.0) and 2 extended barrels

(0.85 < |n| < 1.7); 64 modules in each barrel

granularity <+ 5182 cells; 3 radial layers

Extended Barrels =%



TileCal read-out

read-out system — 10000 channels

PMT output signal is shaped & amplified every 25 ns
digitized samples are sent to ReadOut Driver (ROD)

trigger selection

calibration sequence: eV = test beam const [eV/Q] *
CIS const [Q/ ADC-count] * Cs const * laser const

e resolution for calorimeters: o ~ ﬁ

Detector light
. ctector: ight mi
Physics = ieqana and
WLS fibers
N
e /
137
Cs source and  Laser Charge
energy current  light injection

from min.bias
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Reconstruction of event

amplitude, time and quality of the signal are estimated with
optimal filtering (OF) algorithm

non-iterative OF algorithm implies noise variance
minimization; weights based on channel pulse shape, expected

phase... .
A= ZaiSi;to = Z ZbZSZ

OF is sensitive to the timing phase — timing calibration need
accurate measurement of energy — noise measurement need

IS T T
T 5 Ys=7 TeV. coll\slons ‘ ‘ o
sssss / oLl bt treees s:‘%Hﬂé
] Ll T e ]
E 0y + +
P

3 o ATLAS Preliminary y
E| 20F + Tile Calorimeter +
: st + +
El _30 | + @  OF Online
E| OF Online + Phase Correction Tl

-50 0 50 100
ns togp [NS]

28



Tile Cell Time [ns]

Timing preparation of the TileCal

important for energy reconstruction as well as timing measurements
digitization timing in the detector should be adjusted to the peak
value of registered signal

initial timing calibration was performed using high-energy muons
later on, timing constants were tuned with the calibration derived
with jet events in collision data: gaussian mean of time distribution
laser-in-gap events — laser shots during empty orbit in physics runs
splash events — timing measured in high-energy muon collision;
corrected for time-of-fly for each channel
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TileCal timing monitoring

e monitoring of timing stability — comparison of the mean time
in channels with the current timing constants:
@ laser monitoring tool: reporting about timing shifts above 3ns

@® using jets, similarly to the calibration based on jet data

e status of stability can be checked in a short time after

data-taking — correction for time constants before physics

analyses

e current situation: stability
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o Mgan celltime [ns]

Timing resolution performance

Mean time in LBC
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timing is stable between runs; can be different due to different
beam phase wrt LHC clock

during Runl, time setting were frequently changing;
corrections the RMS improves from 0.90 ns to 0.82 ns

during 2017, only 12 cases of timing jump were detected +
timing in 5 individual channels was corrected; timing jumps
above 3ns are corrected

resolution 0.5-0.6ns for £ ~ 20 GeV, below 1ns for
E. > 4GeV
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Picture of final state
Substracting of background and selection of events-of-interest are
of the major importance
<pu>= O-inel'g
JLHCbunch

Pile-up is multiple p-p interactions at the same bunch crossing.
® events-of-interest = hard high-pt deep inelastic parton-parton scattering (a few,

typically 1) +
® soft collisions = inelastic parton-parton interaction at low-pt range (about 25 at
the current condition) == noise

beam beam remnants

hard scatiered parton
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Arbitrary units

In-time & out-of-time pile-up

Pile-up smears resolution.

e in-time pile-up: simultaneous p-p collisions

e out-of-time pile-up: impact of the past/future collisions on
the signal shape in the current bunch-crossing (i.e. slow LAr
EM calorimeter charge collection ~500 ns)
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Noise measurement is essential.
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Noise in energy
There are two major sources of noise:

e one brought by electonics, and

e another pile-up raised, which input
depends on the number of
interaction registred in the event

e noise in a given cell is estimated as
standart deviation of energy
distribution, in a reasonable
assumption of its Gaussian shape

2
Ototal = Uglec + Tpite—up = H 7 s >7 (1)
R
Ototal 1S €stimated as RMS depending
on O pile—up and R, or rescaling factor
used to correct < p > value according
to luminosity conditions and frgc.

measurement
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Pile-up noise measurement

Pile-up noise estimation:

assuming azimuthally uniform
energy distribution

measurement in data collected
& MC simulation

estimation of RMS of energy
distribution at a given < u >
(number of interactions)

derivation of PU constants from
noise dependence on < p >

PU constants received for each
cell type are implemented into
condDB

PU calibration is crucial
parameter during jet
reconstruction
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Monitoring of pile-up noise level

e PU noise level depends on the run conditions: /s, fryc, LB
structure, etc. and should be constantly monitored

e important for reconstruction of final state physical picture,
especially under high-luminosity conditions

ATLAS Preliminary
Tile Calorimeter




Jet reconstruction

parton level: partons knocked-out from protons

particle level: particles as a result of parton evolution
(hadronisation)

reconstruction: using energy deposits in calorimeter — cells or
tracks; inputs are topological clusters

include all entities (clusters/particles) within a cone of a given
size (often A¢ = 0.4) starting with the most energetic input
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Topological clusterization

e topological cluster is a set of topologically connected cells
with a significant signal above noise (energy of particles) and
particles

e clusterization — formation of topocluster

@ starting with the most energetic cell £ >= 4 (nominally)
@ surrounding the seed with neighbouring cells % >=2
© wrapping protocluster with perimeter cells % >=0
e the thresholds 4-2-0 are choisen to suppress reconstruction of

noisy clusters and ensure pile-up substraction

ATLAS simulation 2010
Pyia 6425 = E[MeV]
o

tan g xsin
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ihe S Y
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fjoint and neighboring cells

ed cells
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Number of Clusters

Modified topological clusters

e higher luminosity means increased number of pile-up interactions

e to prevent noise influence on final state freconstruction, updating of
topoclusters formation scheme is proposed — modified topological
clusterization schemes with higher energetic threshold for seed cell:
6-2-0, 10-2-0, 14-2-0, 20-2-0

E,a[GeV]

Mod. strategies: impact of small-energy range is

pile-up growing.
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reduced; robust under
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Jet Response and Resolution

e jets were reconstructed using topological clusters made with
enhanced signal-noise criteria

own JES for each clusterization scheme were derived; jet area
pile-up and origin correction were applied

e however, jet resolution is smeared in the mod. strategies
still, the modified schemes show performance under high
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Pile-up suppression in jets reco —1
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e number of reconstructed jets decreases significantly in
higher-t4..q strategies

e matching with truth jets shows relevance of the modified
schemes in high pile-up conditions

e increased t4.q prevent formation of noise-driven topocluster
and their consequent input to reconstructed jets
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Pile-up suppression in jets reco —2
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e angular jet resolution has trend to improve in the modified
strategies: raising by 1% at < p >= 30 in the default strategy
4-2-0, and stable under growing pile-up in the mod.strategies

e although absolute value of jet energy resolution increases in
the mod.strategies, pile-up mitigation has achieved: jet energy
response is not sensitive to growing number of primary
vertices in the mod. schemes, while increasing by 1% with
addtional 30 interactions in the default startegy
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Summary

jet energy resolution (from data):

o(E[GeV))/E[GeV] S92 + 3%

decreasing of JES uncertainty (now 1% for jets

55 < pr|GeV] < 500 and 3% for pr = 20GeV)

proposed pile-up mitigation technique — clusterization with
increased threshold for a seed cell — shows robustness in high
pile-up conditions

results of the timing monitoring with laser-in-gap and collision
data allow to make necessary timing adjustments before data
processing for physics analysis

current timing resolution is below 1ns for F..;; > 4GeV
during 2017, only a dozen of timing changes were reported in
2017

nowadays, the TileCal has ~ 0.8% of its cells masked,;
calibration is stable with precision of < 1%



backup
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Jet Resolution

Energy resolution can be estimated by the following equation:

AE _ ja b
E VETETC

where a is a sampling term describing stochastic effect due to the
fluctuation of shower development,

b takes into account energy measurement dependence on noise,

¢ is systematic error due to technical and machinery specifics, and
energy response uniformity.

@ Constant term: Uniformity of the detector medium.

@® Stochastic term: Level of active sampling wrt total detector
volume.

©® We should have a look at noise term — b which expresses
uncertainty in energy measurement.
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Maps of events — 1 small Pt bin
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Number of topoclusters being formed is decreasing dramatically with
growing tseeq: from in the default 4-2-0 to in 14-2-0, and through — in
6-2-0. So reconstructed energy of jet will leak signals from topoclusters
non-formed =- larger shift of pT7¢® w.r.t. pTt il

One can see that in the modified schemes, the jet axis position is drifting
in comparison with its location in the default scheme andor on truth
level.
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Maps of events — 2 large Pt bin

truthPartEta,_truthPartPhi_VS_truthParte yx projection topoEta_topoPhi_VS_topoE_420 yx projection topoEta_topoPhi_VS_topoE_1420 yx projection
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e jet axis position shift as low-energetic and peripheral topoclusters
do not constibute
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Topocluster reconstruction performance

1 cluster corresponds to 1.6 truth particles

Nigpo cluster £ > 1GeV
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Energy Response

ATLAS Simulation Internal
Pythia Dijet {5 = 13TeV 5
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Jet reconstruction
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