

Matěj Hudec

Institute of Particle and Nuclear Physics

Malá Skála, 9 Apr 2018

Outline

1. LeptoQuarks in context of minimal SM extensions

2. Phenomenology of LQs in meson physics

3. LQs in SU(4) x SU(2)_L x U(1)_R model

LeptoQuarks in the context of minimal SM extensions

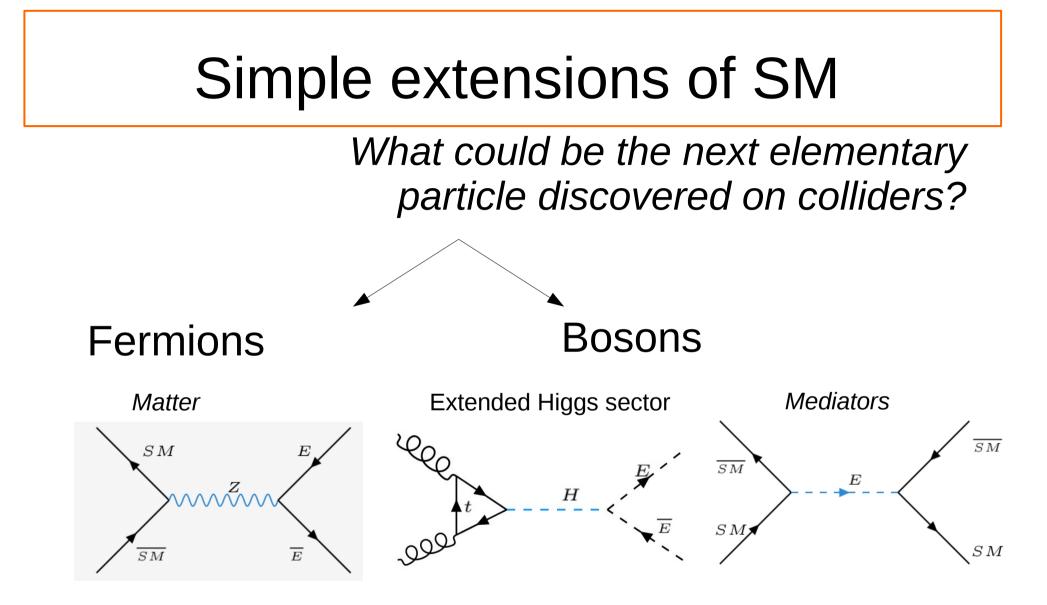
Recall: <u>Standard Model</u>

Gauge group:

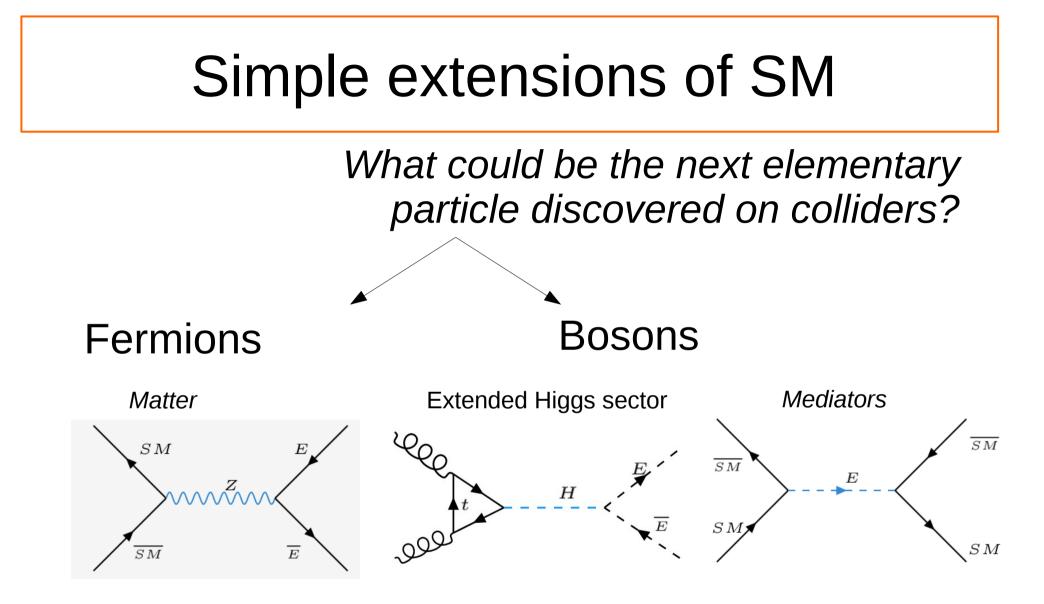
 $SU(3)_c \otimes SU(2)_L \otimes U(1)_Y \longrightarrow SU(3)_c \otimes U(1)_Q$

3 generations of fermions:

$$L^{i} = \begin{pmatrix} \nu_{L} \\ e_{L} \end{pmatrix} \qquad e_{R} \qquad Q^{\alpha i} = \begin{pmatrix} u_{L}^{\alpha} \\ d_{L}^{\alpha} \end{pmatrix} \qquad u_{R}^{\alpha} \qquad d_{R}^{\alpha}$$
$$Y = -\frac{1}{2} \qquad Y = -1 \qquad Y = +\frac{1}{6} \qquad Y = +\frac{2}{3} \qquad Y = -\frac{1}{3}$$

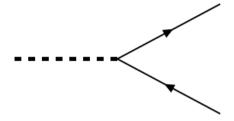

Scalar field:

$$H^{i} = \begin{pmatrix} \phi^{+} \\ \phi^{0} \end{pmatrix} \quad Y = +\frac{1}{2}$$


LeptoQuarks in the context of minimal SM extensions

Recall: <u>Standard Model</u>

$$\begin{aligned} \mathcal{L}_{SM} &= -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{2} A^{i}_{j\mu\nu} A^{j\mu\nu}_{i} - \frac{1}{2} G^{\alpha}_{\mu\nu\beta} G^{\beta\mu\nu}_{\alpha} \\ &+ \overline{L}_{i} i D^{i}_{j} L^{j} + \overline{e} i D e + \overline{Q}_{i\alpha} i D^{i\alpha}_{j\beta} Q^{j\beta} + \overline{u}_{\alpha} i D^{\alpha}_{\beta} u^{\beta} + \overline{d}_{\alpha} i D^{\alpha}_{\beta} d^{\beta} \\ &+ (D_{\mu} H)^{\dagger}_{k} D^{k\mu}_{j} H^{j} + \mu^{2} H^{\dagger}_{i} H^{i} - \lambda \left(H^{\dagger}_{i} H^{i} \right)^{2} \\ &+ \left(\overline{Q}_{i\alpha} y_{(d)} d^{\alpha} \varepsilon^{ij} H^{\dagger}_{j} + \overline{Q}_{i\alpha} y_{(u)} u^{\alpha} H^{i} + \overline{L}_{i} y_{(e)} e H^{i} \right) + \text{h.c.} \end{aligned}$$

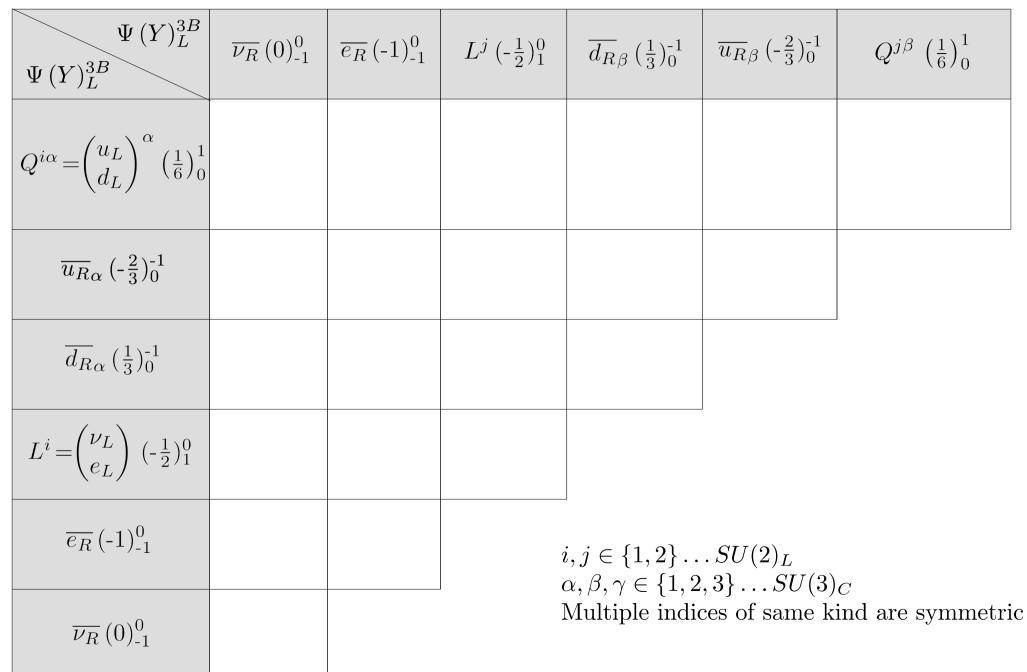


- enormous number of possibilities
- limited number of possibilities

- enormous number of possibilities
- limited number of possibilities

Yukawa interacion

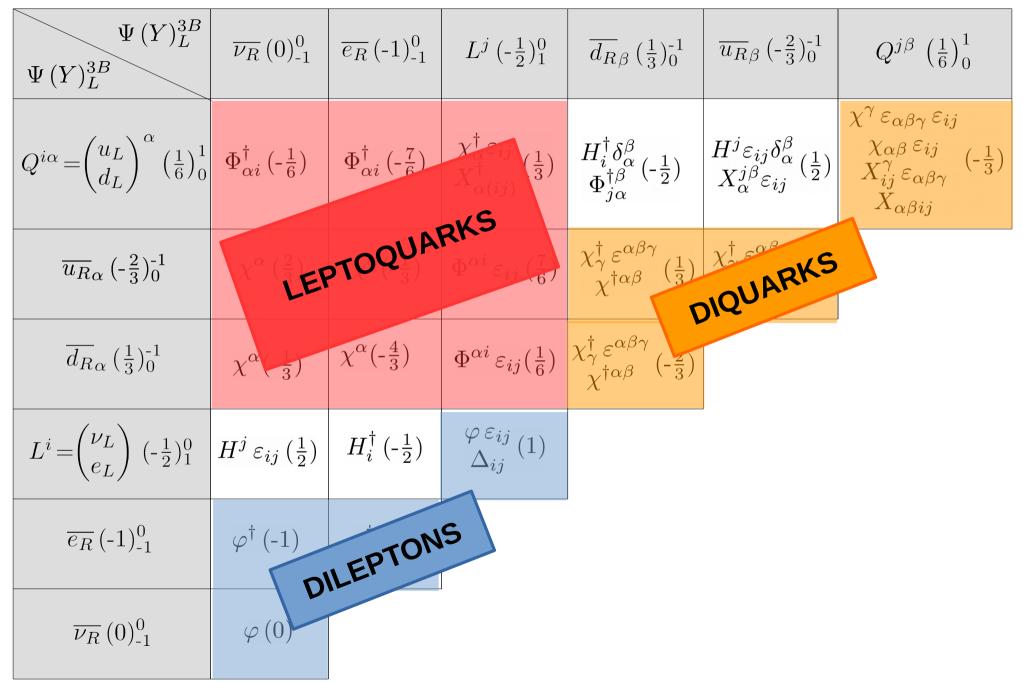
• Lorentz invariance:

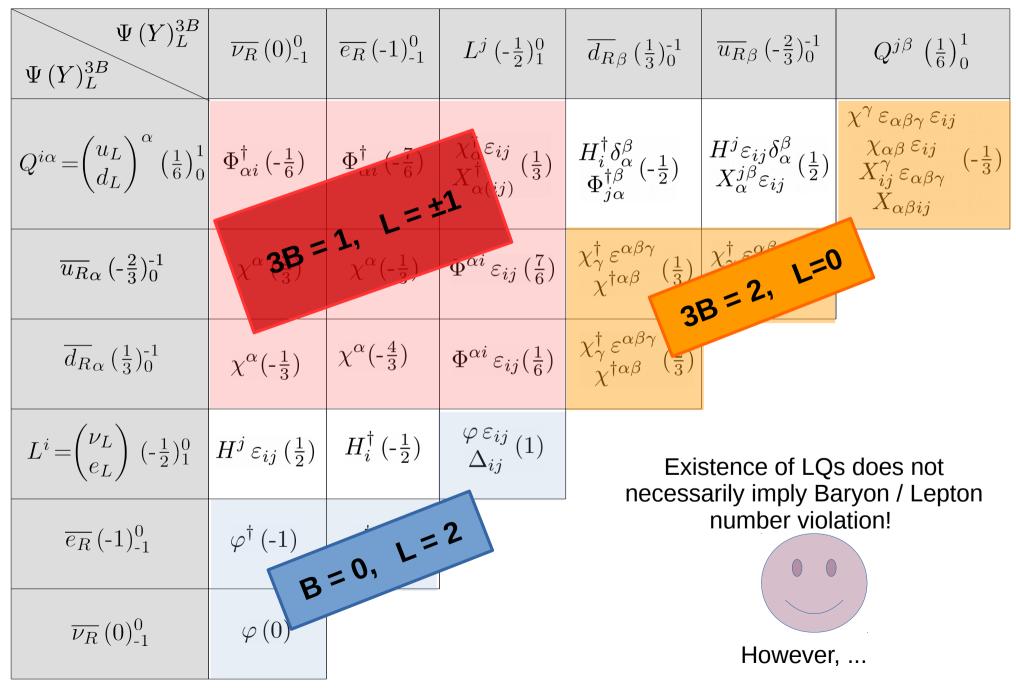

$$\overline{\psi_R^{(1)}}\psi_L^{(2)}\Phi + h.c.$$

...known from SM

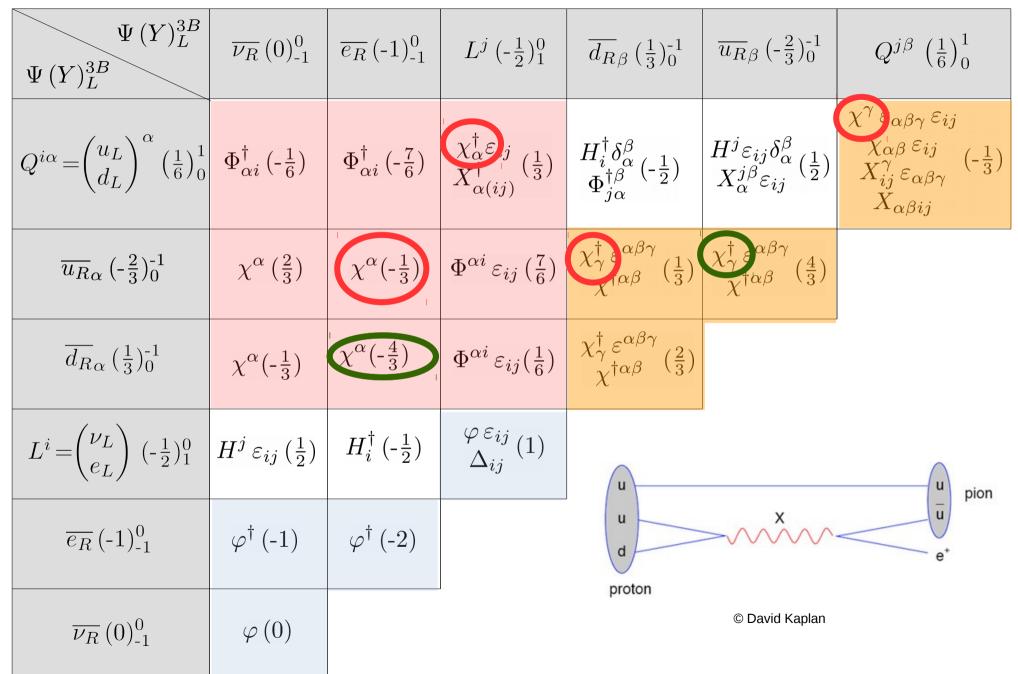
 $\psi_L^{(1)''} \mathcal{C} \psi_L^{(2)} \Phi + h.c.$ $\psi_R^{(1)}{}^T \mathcal{C} \, \psi_R^{(2)} \Phi + h.c.$

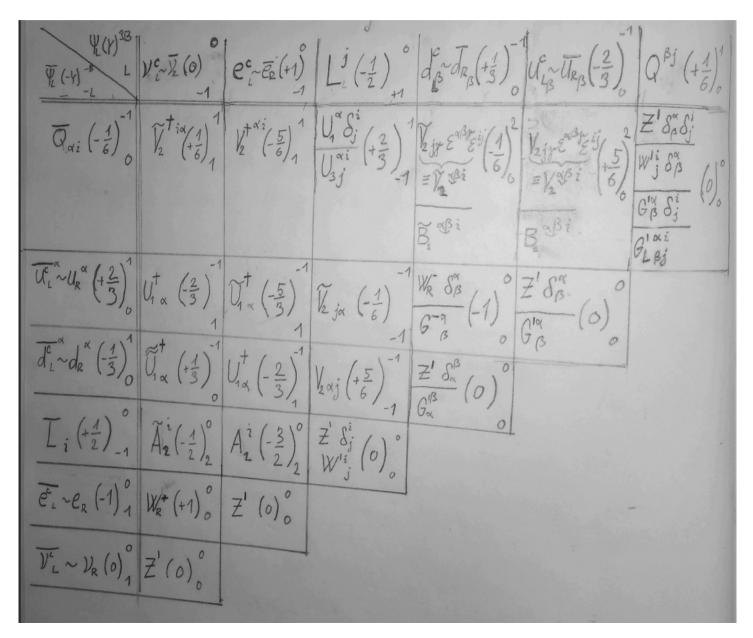
• Gauge invariance: $G_{\rm SM} = SU(3)_{\rm c} \otimes SU(2)_{\rm L} \otimes U(1)_{\rm Y}$ $(1)_{\rm Y} = 0$ contract all SU(3) and SU(2) indices


Catalogue of possible scalar mediators


Catalogue of possible scalar mediators

$\Psi(Y)_L^{3B}$ $\Psi(Y)_L^{3B}$	$\overline{\nu_R} \left(0 \right)_{-1}^0$	$\overline{e_R} \left(-1 \right)_{-1}^0$	$L^{j} \left(-\frac{1}{2}\right)_{1}^{0}$	$\overline{d_R}_\beta \left(\frac{1}{3}\right)_0^{-1}$	$\overline{u_R}_\beta \left(-\frac{2}{3}\right)_0^{-1}$	$Q^{jeta} \left(rac{1}{6} ight)^1_0$			
$Q^{i\alpha} = \begin{pmatrix} u_L \\ d_L \end{pmatrix}^{\alpha} \left(\frac{1}{6}\right)_0^1$	$\Phi^{\dagger}_{lpha i}\left(-rac{1}{6} ight)$	$\Phi_{\alpha i}^{\dagger}\left(-\frac{7}{6}\right)$	$\begin{array}{c} \chi^{\dagger}_{\alpha}\varepsilon_{ij} \\ X^{\dagger}_{\alpha(ij)} \end{array} (\frac{1}{3})$	$ \begin{array}{c} H_{i}^{\dagger}\delta_{\alpha}^{\beta} \\ \Phi_{j\alpha}^{\dagger\beta} \left(-\frac{1}{2} \right) \end{array} $	$\frac{H^{j}\varepsilon_{ij}\delta^{\beta}_{\alpha}}{X^{j\beta}_{\alpha}\varepsilon_{ij}}(\frac{1}{2})$	$ \begin{array}{c} \chi^{\gamma} \varepsilon_{\alpha\beta\gamma} \varepsilon_{ij} \\ \chi_{\alpha\beta} \varepsilon_{ij} \\ X_{ij}^{\gamma} \varepsilon_{\alpha\beta\gamma} \\ X_{\alpha\beta ij} \end{array} (-\frac{1}{3}) $			
$\overline{u_R}_{\alpha} \left(-\frac{2}{3}\right)_0^{-1}$	$\chi^{lpha}\left(rac{2}{3} ight)$	$\chi^{\alpha}(-\frac{1}{3})$	$\Phi^{\alpha i}\varepsilon_{ij}\left(\frac{7}{6}\right)$	$\left \begin{array}{c} \chi^{\dagger}_{\gamma}\varepsilon^{\alpha\beta\gamma}\\ \chi^{\dagger\alpha\beta} \left(\frac{1}{3}\right) \end{array}\right.$	$\chi^{\dagger}_{\gamma} \varepsilon^{lphaeta\gamma}_{\chi^{\dagger}lphaeta} \left(rac{4}{3} ight)$				
$\overline{d_R}_{\alpha} \left(\frac{1}{3}\right)_0^{-1}$	$\chi^{lpha}(-rac{1}{3})$	$\chi^{\alpha}(-\frac{4}{3})$	$\Phi^{\alpha i} \varepsilon_{ij}(\frac{1}{6})$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					
$L^i = \begin{pmatrix} \nu_L \\ e_L \end{pmatrix} \ (-\frac{1}{2})_1^0$	$H^{j} \varepsilon_{ij} \left(\frac{1}{2}\right)$	$H_i^{\dagger}\left(-\frac{1}{2} ight)$	$\frac{\varphi \varepsilon_{ij}}{\Delta_{ij}} (1)$						
$\overline{e_R} \left(-1 \right)_{-1}^0$	$arphi^{\dagger}$ (-1)	φ^{\dagger} (-2)	$i,j\in\{1,2\}\dots SU(2)_L$ $lpha,eta,\gamma\in\{1,2,3\}\dots SU(3)_C$						
$\overline{\nu_R} \left(0 \right)_{-1}^0$	$arphi\left(0 ight)$		Multiple indices of same kind are symmetric						


Catalogue of possible scalar mediators


Baryon & Lepton numbers

Baryon & Lepton numbers

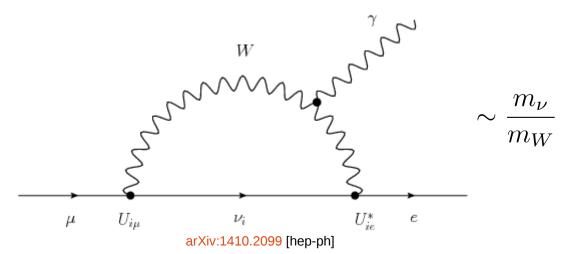
Catalogue of possible vector mediators

Complete list of leptoquarks

(SU(3), SU(2), U(1))	Spin	Symbol	Type	F
$(\overline{3},3,1/3)$	0	S_3	$LL(S_1^L)$	-2
(3, 2, 7/6)	0	R_2	$RL\left(S_{1/2}^{L} ight),\ LR\left(S_{1/2}^{R} ight)$	0
$({f 3},{f 2},1/6)$	0	$ ilde{R}_2$	$RL(ilde{S}_{1/2}^{ec{L}}),\overline{LR}(ilde{S}_{1/2}^{ec{L}})$	0
$(\overline{3},1,4/3)$	0	$ ilde{S}_1$	$\dot{R}R\left(ilde{S}_{0}^{R} ight)$ '	-2
$(\overline{3},1,1/3)$	0	S_1	$LL\left(S_{0}^{L} ight),RR\left(S_{0}^{R} ight),\overline{RR}\left(S_{0}^{\overline{R}} ight)$	-2
$(\bar{3}, 1, -2/3)$	0	$ar{S}_1$	$\overline{RR}(ar{S}_0^{\overline{R}})$	-2
$({f 3},{f 3},2/3)$	1	U_3	$LL\left(V_{1}^{L} ight)$	0
$({f \overline{3}},{f 2},5/6)$	1	V_2	$RL(V_{1/2}^L), LR(V_{1/2}^R)$	-2
$(\overline{3}, 2, -1/6)$	1	$ ilde{V}_2$	$RL(ilde{V}_{1/2}^{L}),\overline{LR}(ilde{V}_{1/2}^{\overline{R}})$	-2
$({f 3},{f 1},5/3)$	1	$ ilde{U}_1$	$\dot{R}R\left(ilde{V}_{0}^{R} ight)$ '	0
$({f 3},{f 1},2/3)$	1	U_1	$LL\left(V_{0}^{L} ight),RR\left(V_{0}^{R} ight),\overline{RR}\left(V_{0}^{\overline{R}} ight)$	0
(3, 1, -1/3)	1	$ar{U}_1$	$\overline{RR}(ar{V_0^R})$	0

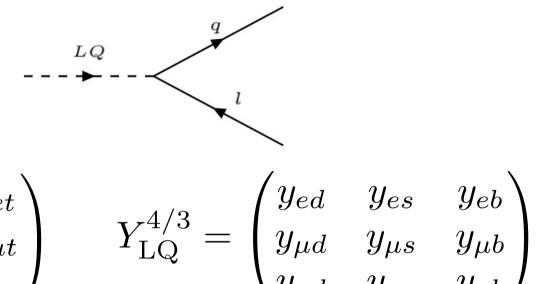
1603.04993

LQs in flavour physics

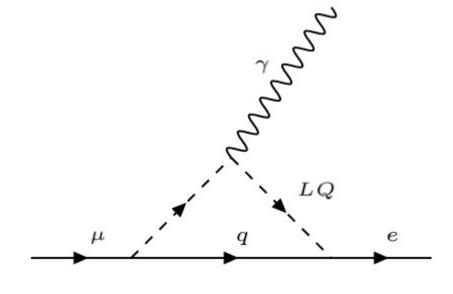

• Semileptonic meson decays

LQs necessarily imply at least one of:

- Lepton flavour violation (LFV)
- Lepton flavour universality violation (LFUV)


Lepton flavour violation (LFV)

- Experiment: $\operatorname{Br}(\mu \to e\gamma) < 4.2 \cdot 10^{-13}$
- <u>Standard Model</u>:
 - exact accidental symmetry $U(1)_e \otimes U(1)_\mu \otimes U(1)_\tau$
- <u>SM + massive neutrinos</u>:
 - LFV via neutrino oscillations
 - no measurable effect on collider physics


Lepton flavour violation (LFV)

• LeptoQuarks:

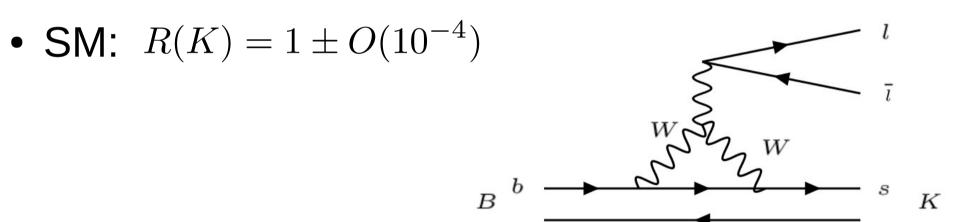
$$Y_{\rm LQ}^{1/3} = \begin{pmatrix} y_{eu} & y_{ec} & y_{et} \\ y_{\mu u} & y_{\mu c} & y_{\mu t} \\ y_{\tau u} & y_{\tau c} & y_{\tau c} \end{pmatrix}$$

$$ig y_{ au d} \ y_{ au s} \ y_{ au b}$$

Experiment requires Y_{LQ} being "sparse", e.g.

$$Y_{\rm LQ} = \begin{pmatrix} 0 & 0 & 0\\ 0 & y_1 & y_2\\ 0 & 0 & 0 \end{pmatrix}$$

Lepton Flavour Universality Violation

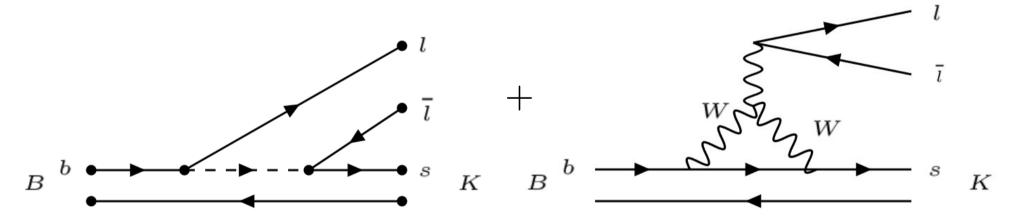

- <u>Flavour universality</u> = $U(3)_{e\mu\tau}$ symmetry
 - all 3 leptons have the same properties
 - e.g. $\sigma(p \, p \to X \, e^+ \, e^-) = \sigma(p \, p \to X \, \mu^+ \, \mu^-)$
- <u>SM</u>: explicitly violated by Higgs interactions
 - leptons have different masses
 - neglectable at HiE

B-physics anomalies

$$R(K) \equiv \frac{\operatorname{Br} \left(B \to K \mu^+ \mu^- \right)}{\operatorname{Br} \left(B \to K e^+ e^- \right)}$$
 (FCNC)

R(K) = 1

Flavour–universal universe:

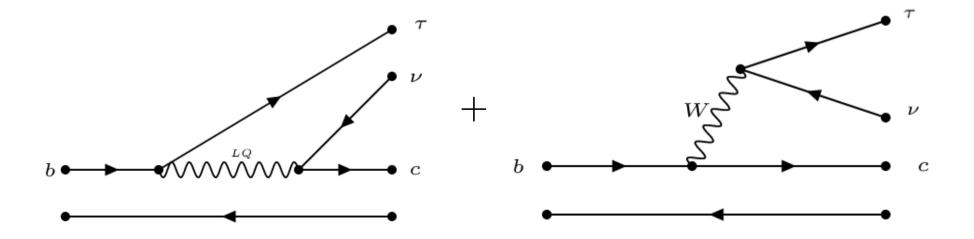

• Experiments in our universe (LHCb): 2.6 σ dev.

 $R_K = 0.745^{+0.090}_{-0.074} \,(\text{stat}) \pm 0.036 \,(\text{syst})_{1406.6482}$

B-physics anomalies

$$R(K) \equiv \frac{(B \to K \mu^+ \mu^-)}{(B \to K e^+ e^-)}$$
 (FCNC)

• Leptoquarks:

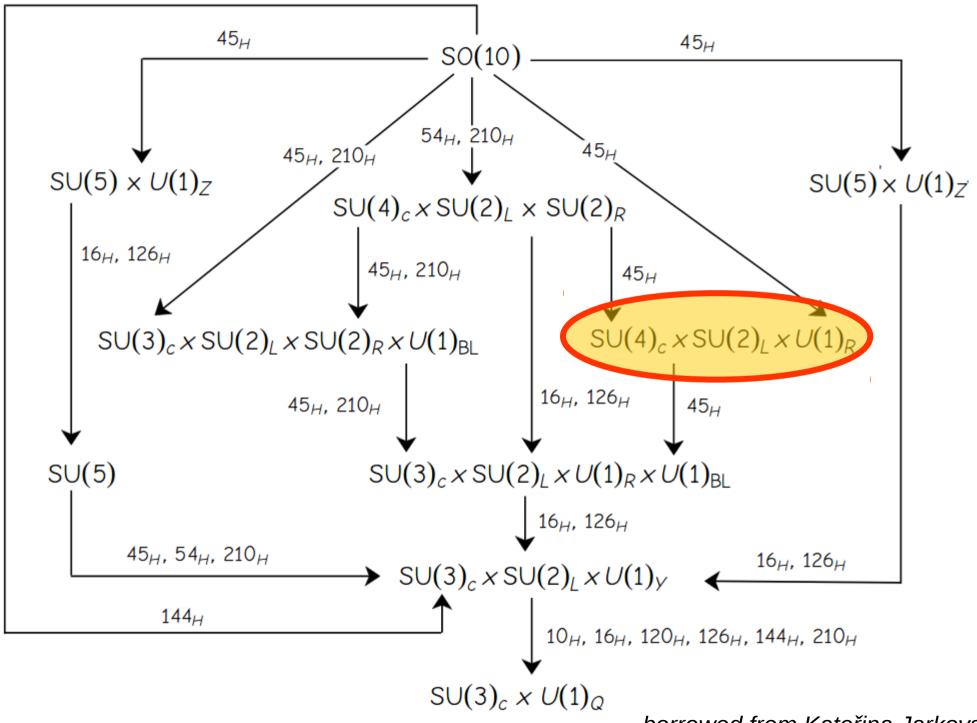

• Experiments in our universe (LHCb):

 $R_K = 0.745^{+0.090}_{-0.074} \,(\text{stat}) \pm 0.036 \,(\text{syst})_{1406.6482}$

B-physics anomalies

$$R(D^{(*)}) = \frac{\operatorname{Br}(B \to D^{(*)} \tau \nu)}{\operatorname{Br}(B \to D^{(*)} l \nu)}, \quad l = \mu, e$$

- FUU: $R(D) = R(D^*) = 1/2$
- SM: $R(D) = 0.300 \pm 0.010$, $R(D^*) = 0.252 \pm 0.05$
- Experiment: 4σ deviation (BaBar, Belle, LHCb)



Other SM precission tests

- Muon anomalous magnetic moment
- Hundreds of other observables without significant deviation
 - Higgs sector
 - purely hadronic processes

SU(4) x SU(2)_L x U(1)_R

- Lepton number as the fourth color
- Contains both vector and scalar TeVish LQs
- Conserves Baryon number
- Goal: model explaining R(K) & R(D) but fullfilling all other SM-precission constraints
- Issue: Unitarity of the gauge coupling matrix

borrowed from Kateřina Jarkovská

Summary

- LeptoQuarks are (so far) hypothetical particles
- Observed discrepancies in (only) semileptonic meson decays points towards their existence
- We are working on an SU(4)-based model which is supposed to be compatible with all SM-precission data
- Direct searches for TeV LQs are thus very well motivated