Spin of resonances from the neutron capture experiment in rare-earth nuclei

Ingrid Knapová

Charles University, Prague

April 9, 2018

Outline

- Introduction
 - Gamma decay
 - Neutron capture reaction
- 2 161,163 Dy (n,γ) and 167 Er (n,γ) measurements
 - Experimental data reduction
- Results
 - ^{161,163}Dy resonance spin assignment
 - ¹⁶⁷Er resonance spin assignment

Outline

- Introduction
 - Gamma decay
 - Neutron capture reaction
- \bigcirc 161,163 Dy (n,γ) and 167 Er (n,γ) measurements
 - Experimental data reduction
- Results
 - ^{161,163}Dy resonance spin assignment
 - ¹⁶⁷Er resonance spin assignment

Outline

- Introduction
 - Gamma decay
 - Neutron capture reaction
- $igotimes_{161,163} {\sf Dy}({
 m n},\gamma)$ and ${
 m ^{167}Er}({
 m n},\gamma)$ measurements
 - Experimental data reduction
- Results
 - ^{161,163}Dy resonance spin assignment
 - ¹⁶⁷Er resonance spin assignment

Nuclear levels and gamma decay

Decay of levels at low excitation energies

- Often known experimentally
- Influence of "structure" effects
 - vibrations
 - rotational bands
 - ..
- Properties of individual levels predicted in models

Nuclear levels and gamma decay

Decay of levels with increasing excitation energies

- Individual levels cannot be resolved
- Decay described by statistical approach
- Two average quantities
 - level density
 - photon γ -ray strength function
- Fluctuation properties
 - Porter-Thomas fluctuations of partial radiation widths
- Selection rules for electromagnetic transitions $\alpha \to \beta$ of type XL

$$|J_{\alpha} - J_{\beta}| < L < J_{\alpha} + J_{\beta}$$

 transitions with multipolarity L > 2 strongly suppressed

Neutron capture reaction

- Reaction ${}^{A}X(n, \gamma)^{A+1}X$
- Neutron captured in the nucleus, a neutron resonance is formed, followed by emission of gamma rays
- Average multiplicity of gamma cascades differs for different resonance spin $J=I\pm1/2$ (s-wave resonances)

Los Alamos Neutron Science Center

Neutron spallation source

- 800 MeV protons from LINAC (7)
- 20 Hz repetition rate
- Pulse width \approx 125 ns
- Moderated tungsten target in Lujan Neutron Scattering Center (1)
- \approx 14 n's/proton, neutron energies from thermal up to several MeVs
- detector DANCE is on a 20 m flight path
- cca 1 cm beam after collimation

DANCE

Detector for Advanced Neutron Capture Experiments

- High efficiency, high segmented scintillator, 160 BaF₂ crystals
- Signals from crystals within a preset time window form a cascade
- Different 3D histograms available E_n vs m vs E_{sum} and E_n vs m vs E_{γ} for certain E_{sum} intervals

2D histogram E_n vs m vs E_{sum} , summed over all m, 168 Er

Projection onto E_n , time-of-flight spectrum

A specific resonance is chosen

Projection onto E_{sum} , sum-energy spectrum

Another resonance is chosen

Comparison of sum-energy spectra, ¹⁶⁸Er vs ¹⁶⁷Er isotope

Gate on sum-energy is applied

Comparison of gated and ungated yields

Resonance spin assignment

Used method by Bečvář et. al. published in NIM A 647, 73 (2011) Optimized γ -multiplicity-based spin assignments of s-wave neutron resonances

Yield (as a function of E_n) is assumed in form:

$$Y(E_n) = Y(E_n)_{J=I+\frac{1}{2}} + Y(E_n)_{J=I-\frac{1}{2}} + (Y(E_n)_{\text{background}}),$$

where the partial yields are obtained bin-by-bin by least square fit of **multiplicity** vector \vec{m} in given bin using so-called multiplicity **prototypes**.

Multiplicity prototypes in ¹⁶¹Dy

Multiplicity prototypes in ¹⁶³Dy

Multiplicity prototypes in ¹⁶⁷Er

Resonance spin assignment

Used method by Bečvář et. al. published in NIM A 647, 73 (2011) Optimized γ -multiplicity-based spin assignments of s-wave neutron resonances

Yield (as a function of E_n) is assumed in form:

$$Y(E_n) = Y(E_n)_{J=I+\frac{1}{2}} + Y(E_n)_{J=I-\frac{1}{2}} + (Y(E_n)_{\text{background}}),$$

where the partial yields are obtained bin-by-bin by least square fit of **multiplicity** vector \vec{m} in given bin using so-called multiplicity **prototypes**.

Confirmation of spin on a few non-prototype resonances

Results for resonance spins in ¹⁶¹Dy

Works up to \approx 440 eV.

Overall good agreement with Atlas of N. Res. by S.F.Mughabghab. For 114 resonances in 161 Dv:

- ullet 24 new assignments from unknown J to J=2 or J=3
- 1 reassignment 91.12 eV seems to be J=2 rather than J=3
- several possible close dublets that need futher investigation with help of DICEBOX/GEANT4

224.43 eV resonance assigned the spin of J=3

256.81 eV and 267.81 eV resonances are J=3,2 respectively

314.78 eV and 315.76 eV resonances are J=2,3 respectively

Results for resonance spins in ¹⁶³Dy

Works up to \approx 950 eV.

Overall good agreement with Atlas of N. Res. by S.F.Mughabghab. For 102 resonances in 163 Dy:

- 5 new assignments from unknown J to J=2 or J=3
- 6 reassignments from J=2 to J=3 and vice versa
- several possible close dublets that need futher investigation with help of DICEBOX/GEANT4
- several weak resonances remain inconclusive due to low statistics

Confirmation of spin on a few non-prototype resonances

127.46 eV is J=2 not J=3, possible dublet at \approx 120.33 eV

224.15 eV is not single J=2 resonance but dublet

411.08 eV is J=3 rather than J=2

Preliminary results for resonance spins in ¹⁶⁷Er

Overall good agreement with Atlas of N. Res. by S.F.Mughabghab. For 60 resonances in $^{167}{\rm Er}$:

- 3 new assignments from unknown J to J=3 or J=4
- 4 reassignments from J=3 to J=4 and vice versa
- several possible close dublets that need futher investigation with help of DICEBOX/GEANT4
- several weak resonances remain inconclusive due to low statistics

Confirmation of spin on a few non-prototype resonances

Possible dublet at \approx 53.6 eV

Another dublet at \approx 94.8 eV

Conclusion and future outlook

- Spin assignment in ^{161,163}Dy and ¹⁶⁷Er was carried out
- Overall good agreement with tabulated values
- Resonance spins important for our future ¹⁶⁷Er analysis (MSC spectra)

