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® 5% normal matter
® 25% dark matter
® 70% dark energy
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We know that space is expanding and natural question: how this is
changing, or naively how this is decreasing

big surprise in 1998: space is "




General relativity:
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General relativity:

1 1
R,u,u - §Rg,ul/ mipT'LW
Two possible solutions
® “dark energy”
1 1 9
Ry — ) Ry = m—P(T,W — mpAgu)

® “modification of GR"

1 1
R;w - ing/ + Ag,uu = mipij



@ 1846: Le Verrier's discovery of Neptune in order to explain
discrepancies with Uranus's orbit

“with the top of his pen”




@ 1846: Le Verrier's discovery of Neptune in order to explain
discrepancies with Uranus's orbit

new planet Vulcan closer to Sun?  No, the answer is: GR!



Amplitudes

T /52



Motivation

Objective of amplitude community:

look at familiar objects from different perspective

why? — two possible answers:

@ technical: we can obtain easier some results

@ conceptual: having completely equivalent reformulation of a given
theory can lead to
e new property discoveries (invisible in traditional formulation)
e natural description, framework for something new
/example: principle of least action for Newton's laws vs. quantum
revolution/
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Example: gluon amplitudes
standard method of calculating n-gluon scattering processes:
@ dominated by pure-gluon interactions in QCD

@ elementary 3pt and 4pt vertices

@ construct all possible Feynman diagrams, e.g.:

@ complicated already for tree level diagrams even for small number of
external legs
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History: gluon amplitude, tree-level

o 3pt: 1 diagram, on-shell =0
@ 4pt: 4 diagrams, can be calculated by hand, differential cross section
nice (but intermediate steps complicated)

@ 5pt: calculated in '80, calculation blows up on several pages

b s

structure schematically the numerator:

single-propagator: (pi - €)(e-€)(e - €),
double-propagator: (p; - p;)(pk - €)(e - €)(€ - €),

@ 6pt: impossible by standard method, but...
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History: gluon amplitude, tree-level, 6pt

SSC approved in 1983 (to be cancelled 10 years later) motivated the
following work

THE CROSS SECTION FOR FOUR-GLUON PRODUCTION
BY GLUON-GLUON FUSION

Stephen J. PARKE and T.R. TAYLOR
Fermi Ne I Accele Lab ry, P.O. Box 500, Batavia, IL 60510 USA

Recceived 13 September 1985

The cross section for two-gluon to four-gluon scattering 1s given in a form suitable for fast
numerical calculations.

Theoretical predictions for four-jet production at hadron colliders allow detailed
tests of QCD. Moreover, at SSC energies, four jets become a serious background
to many interesting processes which probe new physics, e.g. pair production of
electroweak bosons [1]. Hence a detailed knowledge of four-jet event characteristics
is crucial for good background rejection. Although some individual contributions
to four-jet production have already been analysed (see e.g. ref. [2]), the two-gluon
to four-gluon scattering, which is the dominant contribution for a wide range of
subprocess energies, has remained beyond the scope of previous computational
techniques. Here we outline our calculation of the cross section for this process, in
the tree approximation of perturbative QCD. The final cross section is presented in
a form suitable for fast numerical calculations.

Our calculation makes use of techniques developed in ref. [3], based on the
application of extended supersymmetry. We adopt the convention that all particles
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History: gluon amplitude, tree-level, 6pt
Parke and Taylor finished the article with:

Details of the calculation, together with a full exposition of our techniques, will
be given in a forthcoming article. Furthermore, we hope to obtain a simple analytic
form for the answer, making our resuit not only an experimentalist’s, but also a
theorist’s delight.
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History: gluon amplitude, tree-level, 6pt
Parke and Taylor finished the article with:

Details of the calculation, together with a full exposition of our techniques, will
be given in a forthcoming article. Furthermore, we hope to obtain a simple analytic
form for the answer, making our resuit not only an experimentalist’s, but also a
theorist’s delight.

Indeed it was given a year later [Parke, Taylor '86]:

(12)*
(12)(23) ... (nl)

Ap(——+...+H) =

One line formula!
The so-called spinor-helicity formalism was introduced (reasonable
variables for massless particles) cf. [Mangano,Parke, Xu '87]

(ig) = \/|2pi - pjle’®

Is there some better way to calculate?
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Example: gluon amplitudes

2 3
At tree level:
@ colour ordering — stripped amplitude 1 L
MO (py, . opn) = Y Tr(t® %) My (py, ...

0/Zn

L Mg(pa(l), RN 7pa(n)) = M(pl, ce ,pn) = M(1,2, .. n)
@ propagators = the only poles of M,

@ thanks to ordering the only possible poles are:

P2 = (pi + pis1 + ...+ pjo1 + p;)°

. Pn)
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Pole structure

Weinberg's theorem (one particle unitarity): on the factorization channel

lmM M ( x—le +1,.
- S0 g Ml
j J+1
[ [
2
1 n
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BCFW relations, preliminaries
[Britto, Cachazo, Feng, Witten '05]

Reconstruct the amplitude from its poles (in complex plane)

@ shift in two external momenta
pi = pi + 2q, p; =7 Pj—2q
@ keep p; and p; on-shell, i.e.
2 _ _ _
¢ =qpi=qp=0

e amplitude becomes a meromorphic function A(z)
@ only simple poles coming from propagators P,;(2)

e original function is A(0)

14 /5>
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BCFW relations: factorization channels

S0

Cauchy's theorem

1 @A(z) _A(O)JFZMSZLZ’C)
k

2mi z
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Imz

BCFW relations: factorization channels

S0

Cauchy's theorem

0L MA(Z)—A(O)—%ZI%SZW
k

2 ) oz
If A(z) vanishes for z — oo

A=A@)=- Yy et (Zf )
k
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BCFW relations

P2(2)=0 if one and only one i (or j) in (a,a+1,...,b).
Suppose i € (a,...,b) Z j

P2(2)= pa+. - +pic1 +Di+ 20 +pis1 + ... +pp)° =
— P2 1 2¢ Pyz= 0

solution
I 2b 2 2b
Zab = — = = P35 (z) = Wz — Zab
a 2(q . Pab) ab( ) Zab ( a )
Thus

Res A Zab A Zab X As Zab
P2b

and for allowed helicities it factorizes into two subamplitudes
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BCFW relations

Using Cauchy's formula, we have finally as a result
A= ZA—Sk %) 5 ASk (z)

based on two-line shift (convenient choice: adjacent ,7)
recursive formula (down to 3-pt amplitudes)

number of terms small = number of factorization channels

all ingredients are on shell
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BCFW Example: gluon amplitudes

# od diagrams for n-body gluon scatterings at tree level

n |3/4|5] 6| 7 | 8
# diagrams (inc.crossing) || 1 | 4 | 25 | 220 | 2485 | 34300
# diagrams (col.ordered) || 1 | 3| 10 | 38 | 154 654
# BCFW terms -11] 2 3 6 20
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BCFW recursion relations: problems

We have assumed that
A(z) — 0, for zZ — 00

More generally we have to include a boundary term in Cauchy’s theorem.

This is intuitively clear: we can formally use the derived BCFW recursion
relations to obtain any higher n amplitude starting with the leading
interaction. But this does not have to be the correct answer.
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BCFW recursion relations: problems
example: scalar-QED

1 1
L= _ZF;WFMV - |D¢>|2 - 1)‘|¢|4

Due to the power-counting the boundary term is proportional to
B~ 22—\

In order to eliminate the boundary term we have to set A = 2¢2, then the
original BCFW works.

l.e. we needed some further information (e.g. supersymmetry) to
determine the X piece.
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Effective field theories
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Effective field theories: homogeneity
Now we have infinitely many unfixed “A" terms. Schematically

= 5(09)” + Xi(99)" + 1s(99)° +

Example: 6pt scattering, Feynman diagrams

Corresponding amplitude:

Z /\4*4-/\() )

I=poles

A part: not fixed by the pole behaviour.
Task: to find a condition in order to link these two terms
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Non-linear sigma model

[KK, Novotny, Trnka '12 and '13]
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Leading order Lagrangian

@ assume general simple compact Lie group G
@ we will build a chiral non-linear sigma model, which will correspond
to the spontaneous symmetry breaking (G ~ Gr ~ Gy ~ ()

GL X GR — Gv

@ consequence of the symmetry breaking: Goldstone bosons (= ¢)
)
U= ( 2 )
exp \[Fqﬁ
@ transformation of U:
U— VRUV;!

@ their dynamics given by a Lagrangian (at leading order)

2
L= F<a UorU Y

where (...) stands for a trace
22 /52



Leading order Lagrangian
@ note we are still general, i.e. the group can be
G =SU(N), SO(N), Sp(N),
@ generators t' (¢ = ¢'t?)
(t90) = 69, [t9, 7] = iv/2 fabere

@ ‘“group structure” in structure constants, we will define

= _Z'fabc(ﬁc
@ and rewrite
F? F? -1 -1
L= (8 UorU~ ) T«U 0, U)(U™ 0"U))
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Leading order Lagrangian
@ note we are still general, i.e. the group can be
G =SU(N), SO(N), Sp(N),
@ generators t' (¢ = ¢'t?)
(t90) = 69, [t9, 7] = iv/2 fabere
@ “group structure” in structure constants, we will define

ng = _Z'fabc(ﬁc

2n—2
(7)) o

@ and rewrite after some algebra

o) _1)n
L=—-d¢"- (z_jl ((271;!
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Stripping down
Now we want to build up the interaction vertex
We need to learn how to connect structure constants together

—i

() = 5% =%
= )

[ta’ tb} — Z'\/ifathC fabctc — ;Z[ta’ tb]

V2

i.e. we can combine f%°s into one trace, schematically

b c X Cx bx
() -y
a c a b . b . c .
z z * z

and thus the Feynman rule for the interaction vertices can be written as

(e, £°)2%)

ajag...an
V,

n (p17p27 D 7pn) = Z <ta”<l>taa(2) ce ta”(n)>vn(pl, oo apn)
0€Sn/Zn
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Stripping and ordering

Up to now general group: we didn't need any property of f%¢ or t'.
From now on: we will simplify the problem setting G = SU(N).
Simplification due to the completeness relation:

N2-1 1
D X)) = (XY) - ~ XY
a=1

@ double trace has to cancel out
@ two vertices are connected via a propagator (5“b)
@ ordering of t% in the final single trace is conserved

The tree graphs built form the stripped vertices and propagators are
decorated with cyclically ordered external momenta.
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G =SU(N)— U(N)

stripped amplitudes and vertices are unique
M(p1,...,pn) are thus “physical”
we can study different parametrizations [cronin'67],.., [Binens KK Lanz '12]

already mentioned exponential parametrization

there we can simply enlarge G to U(N) group

U = exp (;\/zqﬁf)) U, UeSU(N)
o ¢ however decouples:
L@ = %aaso -9¢° + lf(aﬂﬁaﬂﬁ—w
e results from less restricted U(N) equal to SU(N)
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G = U(N) - different parametrizations!

General form of the parametrization U(¢) — f(x)

fl@) =Y awa®,  f(-a)f(z) =1
k=0

@ “exponential”: fep = €*

e “minimal”: fmin =2+ V1+ 22

u " L 2
o “Cayley” fcaley = 1J_ri§2

1 . .
For details see Appendix A in KK,Novotny, Trnka '13. For original literature see Gursey60,Cronin'67, Ellis,Renner'70
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G = U(N) - different parametrizations!

General form of the parametrization U(¢) — f(x)

= Zakwk, f(=2)f(z) =1
k=0

" . LA _1 ,\/ 1 2n+2
@ ‘“exponential”: fep, = €” = Wen = 1(+5in, (2n+2)! ( k+1)
(71)71 k,l n_k_§
o "minimal”: fmin =12+ V1422 — W2k+1,n = m(k—%%)( ’ﬂ*k'2>
" 1+x/2 _ (_l)k 1
4 Cayley fCaIey - —I?? - wk”n - 1+6kf77, 22n

The stripped Feynman rules can be written
2n+2

Vonta(sig) = (=1) ( ) Zuum Z Siji+h

where s; ; = P(i, j)2.

1 . .
For details see Appendix A in KK,Novotny, Trnka '13. For original literature see Gursey60,Cronin'67, Ellis,Renner'70
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Explicit example: stripped 4pt amplitude

Natural parametrization for diagrammatic calculations: minimal
min  __ 0

Wk n =

Thus off-shell and on-shell stripped vertices are equal.

4pt amplitude
2F?M(1,2,3,4) = —(s12 + 52.3)
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Explicit example: stripped 6pt amplitude

4F*M(1,2,3,4,5,6) =

_ (s1,2 +52,3)(S1,4 + 5455) n (81,4 + 525)(52,3 + 534)
51,3 52,4

(51,2 + 82,5) (83,4 + 545)

53,5

_.I_

— (s12+ 81,4+ 523+ 525+ 534 + 545)

This can be rewritten as

s1,2 + 52,3)(s1,4 + S45)
51,3

N LN/
/NN

1
AF*M(1,2,3,4,5,6) = 2( — s1.9 + cycl
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Explicit example: stripped 8pt amplitude

8FSM(1,2,3,4,5,6,7) =

1(s1,2+523)(s1,4+547)(s56+s67) (51,24 823)(s1,4+ Sa5)(S6,7 + 57.8)

2 $1,355,7 51,356,8
(s1,2+ 52,3)(Sa5+ Sa,7+ 856 + S58 + S6.7+ S7.8) 1
— 2812 — 53174 + cycl
51,3

L NN/
NN

+

\
/
\
/
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Explicit example: stripped 10pt amplitude

|| V V
N /\ /\
V'V vl |
| N

Y

/\

OV b
| | N/
N 7N
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Generalization of reconstruction formula: subtractions

[Benincasa, Conde '11] [Feng et al.’11] [KK,Novotny, Trnka '12]

In introduction: A(z) — 0 for z — o0
Suppose some deformation of the external momenta py — pi(z) so that

A(z) ~ 2 for z— o0

we have to generalize and use the (k + 1)-times subtracted Cauchy
formula

" Res(Aiz) i s —q, L

; 2 —aj —a

AR = ——— Il —>+> Al [ —,
i=1 e A | =15 3 T
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Generalization of reconstruction formula: subtractions

[Benincasa, Conde '11] [Feng et al.’11] [KK,Novotny, Trnka '12]

In introduction: A(z) — 0 for z — o0
Suppose some deformation of the external momenta py — pi(z) so that

A(z) ~ 2 for z — o0

we have to generalize and use the (k + 1)-times subtracted Cauchy
formula

+1
z”:ResAz, z — aj

zZ— Z; Zi — Gy

if for a; we have A(a;) =0

i=1 j=1
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BCFW-like reconstruction of non-linear sigma model

o for the first time we have used the amplitude methods for EFT
@ number of diagrams much lower

@ can be used for a proof of double Adler zero [conjectured in
N. Arkani-Hamed, F. Cachazo and J. Kaplan,: What is the Simplest
Quantum Field Theory? '08]

drawback:

e tailor-made for one special model, in special limit (two derivatives,
massless case, tree-level)

@ done using the ‘off-shell object’: this is against the amplitude idea
Lesson learnt:

@ low energy limit, the Adler zero, plays a role of gauge symmetry
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Scalar effective field theories
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Natural classification
Soft limit of one external leg of the tree-level amplitude

A(tpr,p2, ..., pn) = O(t7), as tp1 — 0

Interaction term

Then another natural parameter is (counts the homogeneity)
om—2
r= n—2

e.g. N
L= am¢4 + amgbG

N LN/
/NN

so these two diagrams can mix: p?" =2 ~ p™ = p = p, i.e. rho is fixed
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We want to focus on a non-trivial case
for: L=0"¢": m < on
or

—Np+2
>(n )p+
n
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First case: p =0 (i.e. two derivatives)

Schematically for single scalar case
L=15(00)7+ > Ni(0%¢") + D Ni(0%¢°) + ...

similarly for multi-flavour (¢;: ¢1, @2, .. .).
non-trivial case
oc=1
Outcome:
@ single scalar: free theory

e multiple scalars (with flavour-ordering): non-linear sigma model

n.b. it represents a generalization of [Susskind, Frye '70], [Ellis, Renner '70]
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Second case: p =1, 0 = 2 (double soft limit)

1. focus on the lowest combination and fix the form:

Lint = c2(0¢ - 06)* + ¢3(9¢ - 9p)? condition: ¢3 = 4c;

N/
N
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Second case: p =1, 0 = 2 (double soft limit)

1. focus on the lowest combination and fix the form:

Lint = c2(0¢ - 06)* + ¢3(9¢ - 9p)? condition: ¢3 = 4c;

N/
N

2. find the symmetry

¢ — ¢ —bpx” +b,0°0¢ (again up to 6pt so far)
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Second case: p =1, 0 = 2 (double soft limit)

1. focus on the lowest combination and fix the form:

Lint = c2(0¢ - 06)* + ¢3(9¢ - 9p)? condition: ¢3 = 4c;

N/
N

2. find the symmetry
¢ — ¢ —bpx” +b,0°0¢ (again up to 6pt so far)

3. ansatz of the form
cn(0¢ - 09)" + cny1(09 - 0¢)"0¢ - O

4. in order to cancel: 2(n + 1)cyr1 = (2n — 1)cy,
5

: _ 1 _ 1 _ 1 _
.. ¢1 =5 = C2 = 3,03 = 75,04 = 19gy- -~
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Second case: p =1, 0 = 2 (double soft limit)

4. in order to cancel 2(n +
ie. cp = 2 = Ccy =
solution:

Depy1 = (2n — ey,
1. _L — 5
§1C3 = 16,64 = 128 -

L=—y1-(9¢-09)

This theory known as a scalar part of the Dirac-Born-Infeld [1934] — DBI
action
Scalar field can be seen as a fluctuation of a 4-dim brane in five-dim

Minkowski space

Remark: soft limit and symmetry are “equivalent”
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Third case: p =2, o0 = 2 (double soft limit)

Similarly to previous case we will arrive to a unique solution: the Galileon
Lagrangian
d+1

L= dnoLy™
n=1

n d
gy = etrotagtra 110,05, 1] muwy = —(d—n)tdet {90,607 .
i=1 j=n+1

It possesses the Galilean shift symmetry
¢ = o+a+byat

(leads to EoM of second-order in field derivatives)
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Surprise: p =2, 0 = 3 (enhanced soft limit)

o general galileon: three parameters (in 4D)

] Only two relevant (dUe to dualities [de Rham, Keltner, Tolley '14] [KK, Novotny '14])
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Surprise: p =2, 0 = 3 (enhanced soft limit)

general galileon: three parameters (in 4D)

only two relevant (due to dualities [de Rham, Keltner, Tolley '14] [KK, Novotny '14])
we demanded O(p?) behaviour

we have verified: possible up to very high-pt order

suggested new theory: special galileon [Cheung,KK,Novotny, Trnka
1412.4095]
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Surprise: p =2, 0 = 3 (enhanced soft limit)

general galileon: three parameters (in 4D)

only two relevant (due to dualities [de Rham, Keltner, Tolley '14] [KK, Novotny '14])
we demanded O(p?) behaviour

we have verified: possible up to very high-pt order

suggested new theory: special galileon [Cheung,KK,Novotny, Trnka
1412.4095]

symmetry explanation: hidden symmetry [K. Hinterbichler and
A. Joyce 1501.07600]

¢ = o+ spata” —12X48" 0,00, ¢
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New recursion for effective theories

[Cheung, KK, Novotny, Shen, Trnka 2015]
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The high energy behaviour forbids a naive Cauchy formula
A(z) #0 for z— o0

Can we instead use the soft limit directly?
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The high energy behaviour forbids a naive Cauchy formula
A(z) #0 for z— o0

Can we instead use the soft limit directly? yes!

The standard BCFW not applicable, we propose a special shift:

pi — pi(l — za;) on all external legs

This leads to a modified Cauchy formula

j{ dz A(z) _o

;Hi(l — aiz)“

note there are no poles at z = 1/a; (by construction).
Now we can continue in analogy with BCFW
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A Periodic Table of Effective Field Theories

[Cheung, KK, Novotny, Shen, Trnka 2016]
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Classification of EFTs

We use the set of four parameters:

(p,0,v,d)
p
A
3
trivial soft
behavior
9 ° sGal °
Gal
P(X) DBI forbidden
1 ° °
o VWV
NLSM
0 ®
0 1 2 3
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Photon scatterings

[Cheung, KK, Novotny, Shen, Trnka, Wen '18]
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Spin-1 sector

we have followed same strategy as for spin-0

good to have some model in mind
there is one (from 1934): The Born-Infeld model

(]

Lor =1/ (~1)P-1det(n + Fu),

represents a nonlinear extension of Maxwell theory

a toy model of general gauge invariant Lagrangian

1
L=—4(FF) + 9 (FFFF) + g (FF)? + g (FF)?
+ g (FFFF)(FF) + g’ (FFFFFF) + ...,

(...): traces over Lorentz indices
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Spin-1 sector
Bottom-up strategy: we have to calculate n-point amplitudes
It reminds very well known problem: “Euler-Heisenberg”, effective field
theory of light-by-light scattering:

“1 ~
1"’/ \rr\ 7‘7 N
(> r—r\
—_— Jq—
L
5 ) rfr& )
a “,

Though, now, the power-counting is different.
Eg. at 6-pt we have to deal with

4 S L, S
WW + \/\/\/\’/ﬁvvw
?"Sxﬁd HJ;I-“?' F“Ehﬁd %f"l-’?

And so on for higher orders.
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Spin-1 sector - tree-level amplitudes
employing the spinor helicity formalism, the 4pt amplitudes:

A =c (12)%(34)% 4 perm
A_py = ey (12)°[34)°

important simplification: helicity conservation, i.e. ¢ = 0.
we can continue with higher orders
6pt:
1- 3~
2~ 5+
4+ 6+

12)2[56]2(3|1 + 2]4]2
R 2 (L L)
5124
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Spin-1 sector

We can go to very high orders (impossible by conventional methods) and
study any sign of interesting behavior

Result
The studied amplitudes can be fixed by the following multi-chiral soft
limit:

lim A____|_++ = 0(6)

A_—r€ or Ap—e€

Our conjecture: for any n-point amplitude we have this result, i.e.

A2 ...on(n+ D (n+m)t) = O(e)
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Spin-1 sector

o formally we have proved it using the supersymmetry
(BI theory corresponds to the pure bosonic sector of the EFT
describing spontaneous sym. breaking of A" =2 to A/ = 1 SUSY)

@ Bl can also be fixed uniquely by a combination of soft limits and
dimensional reduction

@ discussed methods can be used to vector “Galileon-like” theories
L=F>4+*F' 4+ 9'"FC 4 0°F8 4 .., (1)
we can construct the theory recursively, starting with

Ay = (12)°[34]s512
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Spin-2 sector

[work in progress]
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It looks like all this has nothing to do with gravity

Where is the gravity?
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all above theories appear also in the context of CHY-type
formulation [Cachazo, He, Yuan '13]

any new theory or property can be used via the so-called double-copy
gravity = (YM) ® (YM)

(in this context: would be interesting to have a non-abelian
extension of our spin-1 study)

galileon itself is a remarkable theory: can be connected with a local
modification of gravity [Nicolis, Rattazzi, Trincherini '09]. Important
also for cosmology (see e.g. [Chow,Khoury'09] or [de Rham and
Heisenberg '11])

direct way?
footprint of modified gravity in scattering amplitudes —
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spin-2 scattering

Naively one can expect a toy model given by a variation of

L~ \/_det(nmx + aud)laugbl + F;w)

to [Eddington '24], [Deser, Gibbons '98]

,C ~ \/*det(’f]w, + augbl&,qﬁ’ + Fp,y + R;u/)

This wouldn't work - simply due to the homogeneity reasons

Still we can use the spinor-helicity formalism and the little-group scaling
and start the systematic study — see next
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spin-2 scattering
n.b. spin-1: Ay = (12)2(34)?
1- 3

27 5t A — (12)2[56]2(3|1+2]4]%
6= S124

4+ 6+
note that AP™ = 0.

spin-2: the “Born-Infeld” gravity
Ay = (12)4(34)*

(12)4[56]*(3]1 + 2|4]*
5124
It is possible to write a contact term

A = ((12)(23)(31))*([45][56][61)) s

Ag =

This is an ongoing study. . . 50/



Summary

We have offered different approach to the subject of this workshop via
systematic study of scattering amplitudes
Three-step process:

@ numerical study of all possible tree-level amplitudes (child’s play)
@ if something interesting, try to understand it better and prove it
@ use it in phenomenology, GR, cosmology. .. (most difficult part)

rivial soff
tbehz;"?grt . . 732 BI .
- + 1 spin . + 1 spin

bidden

o)

P(X) DBI

Bl

NLSM

o

0

(should and can be done for fermions as well, see e.g. [Elvang et al. '17])
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possible modification of GR — massive graviton

M1 .
V(r) ~ ——e ™
mi,r

massless graviton: two degrees of freedom
massive graviton: five degrees, one can see them as 1 graviton
(massless), 1 photon and 1 scalar

We have to understand all possible theories of spin-1 and spin-0

52 /52



