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Dark space

Our universe is composed of

5% normal matter

25% dark matter

70% dark energy
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Dark space: dark matter

1933: Fritz Zwicky: “dunkle (kalte) materie”

Stay tuned: Galaxy NGC 1052DF2 seems to be without dark matter [arXiv:1803.10237]
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Dark space: dark energy

We know that space is expanding and natural question: how this is
changing, or naively how this is decreasing

big surprise in 1998: space is accelerating (!)
→ nobel priset 2011
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Dark space: dark energy

General relativity:

Rµν −
1

2
Rgµν =

1

mP
Tµν

after 1998
Two possible solutions

1 “dark energy”

Rµν −
1

2
Rgµν =

1

mP
(Tµν −m2

PΛgµν)

2 “modification of GR”

Rµν −
1

2
Rgµν + Λgµν =

1

mP
Tµν
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Two examples from history

1 1846: Le Verrier’s discovery of Neptune in order to explain
discrepancies with Uranus’s orbit

“with the top of his pen”

2 thesame Le Verrier tried to explain the precession of Mercury

new planet Vulcan closer to Sun? No, the answer is: GR!
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Amplitudes
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Motivation

Objective of amplitude community:

look at familiar objects from different perspective

why? → two possible answers:

1 technical: we can obtain easier some results
2 conceptual: having completely equivalent reformulation of a given

theory can lead to

new property discoveries (invisible in traditional formulation)
natural description, framework for something new
/example: principle of least action for Newton’s laws vs. quantum
revolution/
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Example: gluon amplitudes
standard method of calculating n-gluon scattering processes:

dominated by pure-gluon interactions in QCD

elementary 3pt and 4pt vertices

construct all possible Feynman diagrams, e.g.:

complicated already for tree level diagrams even for small number of
external legs
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History: gluon amplitude, tree-level

3pt: 1 diagram, on-shell = 0

4pt: 4 diagrams, can be calculated by hand, differential cross section
nice (but intermediate steps complicated)

5pt: calculated in ’80, calculation blows up on several pages

structure schematically the numerator:

single-propagator: (pk · ε)(ε · ε)(ε · ε),
double-propagator: (pi · pj)(pk · ε)(ε · ε)(ε · ε),

6pt: impossible by standard method, but...
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History: gluon amplitude, tree-level, 6pt
SSC approved in 1983 (to be cancelled 10 years later) motivated the
following work
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History: gluon amplitude, tree-level, 6pt
Parke and Taylor finished the article with:

Indeed it was given a year later [Parke, Taylor ’86]:

An(−−+ . . .+) =
〈12〉4

〈12〉〈23〉 . . . 〈n1〉

One line formula!
The so-called spinor-helicity formalism was introduced (reasonable
variables for massless particles) cf. [Mangano,Parke,Xu ’87]

〈ij〉 =
√
|2pi · pj |eiφij

Is there some better way to calculate?
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Example: gluon amplitudes

At tree level:

colour ordering → stripped amplitude

Ma1...an(p1, . . . pn) =
∑
σ/Zn

Tr(taσ(1) . . . taσ(n))Mσ(p1, . . . , pn)

Mσ(pσ(1), . . . , pσ(n)) = M(p1, . . . , pn) ≡M(1, 2, . . . n)

propagators ⇒ the only poles of Mσ

thanks to ordering the only possible poles are:

P 2
ij = (pi + pi+1 + . . .+ pj−1 + pj)

2
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Pole structure

Weinberg’s theorem (one particle unitarity): on the factorization channel

lim
P 2
1j→0

M(1, 2, . . . n) =
∑
hl

ML(1, 2 . . . j, l)× i

P 2
1j

×MR(l, j + 1, . . . n)
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BCFW relations, preliminaries
[Britto, Cachazo, Feng, Witten ’05]

Reconstruct the amplitude from its poles (in complex plane)

shift in two external momenta

pi → pi + zq, pj → pj − zq

keep pi and pj on-shell, i.e.

q2 = q · pi = q · pj = 0

amplitude becomes a meromorphic function A(z)

only simple poles coming from propagators Pab(z)

original function is A(0)
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BCFW relations: factorization channels

Cauchy’s theorem

0 =

1

2πi

∫
dz

z
A(z) = A(0) +

∑
k

Res (A, zk)

zk

If A(z) vanishes for z →∞

A = A(0) = −
∑
k

Res (A, zk)

zk
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BCFW relations

P 2
ab(z) = 0 if one and only one i (or j) in (a, a+ 1, . . . , b).

Suppose i ∈ (a, . . . , b) 63 j

P 2
ab(z) = (pa + . . .+ pi−1 + pi + zq + pi+1 + . . .+ pb)

2 =

= P 2
ab + 2q · Pabz = 0

solution

zab = − P 2
ab

2(q · Pab)
⇒ P 2

ab(z) = −P
2
ab

zab
(z − zab)

Thus

Res(A, zab) =
∑
s

A−sL (zab)× i
−zab
P 2
ab

×AsR(zab)

and for allowed helicities it factorizes into two subamplitudes
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BCFW relations

Using Cauchy’s formula, we have finally as a result

A =
∑
k,s

A−skL (zk)
i

P 2
k

AskR (zk)

based on two-line shift (convenient choice: adjacent i,j)

recursive formula (down to 3-pt amplitudes)

number of terms small = number of factorization channels

all ingredients are on shell
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BCFW Example: gluon amplitudes

# od diagrams for n-body gluon scatterings at tree level

n 3 4 5 6 7 8

# diagrams (inc.crossing) 1 4 25 220 2485 34300
# diagrams (col.ordered) 1 3 10 38 154 654

# BCFW terms – 1 2 3 6 20
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BCFW recursion relations: problems

We have assumed that

A(z)→ 0, for z →∞

More generally we have to include a boundary term in Cauchy’s theorem.

This is intuitively clear: we can formally use the derived BCFW recursion
relations to obtain any higher n amplitude starting with the leading
interaction. But this does not have to be the correct answer.
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BCFW recursion relations: problems
example: scalar-QED

L = −1

4
FµνF

µν − |Dφ|2 − 1

4
λ|φ|4

e e

Due to the power-counting the boundary term is proportional to

B ∼ 2e2 − λ

In order to eliminate the boundary term we have to set λ = 2e2, then the
original BCFW works.

I.e. we needed some further information (e.g. supersymmetry) to
determine the λ piece.
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Effective field theories
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Effective field theories: homogeneity
Now we have infinitely many unfixed “λ” terms. Schematically

L = 1
2(∂φ)2 + λ4(∂φ)4 + λ6(∂φ)6 + . . .

Example: 6pt scattering, Feynman diagrams

Corresponding amplitude:

M6 =
∑

I=poles

λ24
. . .

PI
+ λ6(. . .)

λ6 part: not fixed by the pole behaviour.

Task: to find a condition in order to link these two terms
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Non-linear sigma model

[KK, Novotny,Trnka ’12 and ’13]
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Leading order Lagrangian

assume general simple compact Lie group G

we will build a chiral non-linear sigma model, which will correspond
to the spontaneous symmetry breaking (GL ' GR ' GV ' G)

GL ×GR → GV

consequence of the symmetry breaking: Goldstone bosons (≡ φ)

U = exp
(√

2
i

F
φ
)

transformation of U :
U → VRUV

−1
L

their dynamics given by a Lagrangian (at leading order)

L =
F 2

4
〈∂µU∂µU−1〉

where 〈. . .〉 stands for a trace
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Leading order Lagrangian

note we are still general, i.e. the group can be

G = SU(N), SO(N), Sp(N), . . .

generators ti (φ = φiti)

〈tatb〉 = δab, [ta, tb] = i
√

2fabctc

“group structure” in structure constants, we will define

Dab
φ ≡ −ifabcφc

and rewrite

after some algebra

L =
F 2

4
〈∂µU∂µU−1〉 = −F

2

4
〈(U−1∂µU)(U−1∂µU)〉
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G = SU(N), SO(N), Sp(N), . . .

generators ti (φ = φiti)

〈tatb〉 = δab, [ta, tb] = i
√

2fabctc

“group structure” in structure constants, we will define

Dab
φ ≡ −ifabcφc

and rewrite after some algebra

L = −∂φT ·
( ∞∑
n=1

(−1)n

(2n)!

(
2

F

)2n−2
D2n−2
φ

)
· ∂φ
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Stripping down
Now we want to build up the interaction vertex
We need to learn how to connect structure constants together

〈tatb〉 = δab

[ta, tb] = i
√

2fabctc
⇒

fabc =
−i√

2
〈[ta, tb]tc〉

fabctc =
−i√

2
[ta, tb]

i.e. we can combine fabcs into one trace, schematically

and thus the Feynman rule for the interaction vertices can be written as

V
a1a2...an

n (p1, p2, . . . , pn) =
∑

σ∈Sn/Zn

〈taσ(1)taσ(2) . . . taσ(n)〉Vn(p1, . . . , pn)
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Stripping and ordering

Up to now general group: we didn’t need any property of fabc or ti.
From now on: we will simplify the problem setting G = SU(N).
Simplification due to the completeness relation:

N2−1∑
a=1

〈Xta〉〈taY 〉 = 〈XY 〉 − 1

N
〈X〉〈Y 〉

double trace has to cancel out

two vertices are connected via a propagator (δab)

ordering of tai in the final single trace is conserved

The tree graphs built form the stripped vertices and propagators are
decorated with cyclically ordered external momenta.
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G = SU(N) → U(N)

stripped amplitudes and vertices are unique

M(p1, . . . , pn) are thus “physical”

we can study different parametrizations [Cronin’67],.., [Bijnens,KK,Lanz ’12]

already mentioned exponential parametrization

there we can simply enlarge G to U(N) group

U = exp

(
i

F

√
2

N
φ0

)
Û , Û ∈ SU(N)

φ0 however decouples:

L(2) =
1

2
∂φ0 · ∂φ0 +

F 2

4
〈∂µÛ∂µÛ−1〉

results from less restricted U(N) equal to SU(N)
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G = U(N) – different parametrizations1

General form of the parametrization U(φ)→ f(x)

f(x) =

∞∑
k=0

akx
k, f(−x)f(x) = 1

“exponential”: fexp = ex

→ wk,n = (−1)k
1+δkn

1
(2n+2)!

(
2n+2
k+1

)

“minimal”: fmin = x+
√

1 + x2

→ w2k+1,n = (−1)n
1+δ2k+1,n

(k−1
2

k+1

)(n−k− 3
2

n−k
)

“Cayley” fCaley = 1+x/2
1−x/2

→ wk,n = (−1)k
1+δkn

1
22n

The stripped Feynman rules can be written

V2n+2(si,j) = (−1)n
(

2

F 2

)n n∑
k=0

wk,n

2n+2∑
i=1

si,i+k

where si,j ≡ P (i, j)2.

1
For details see Appendix A in KK,Novotny,Trnka ’13. For original literature see Gursey60,Cronin’67, Ellis,Renner’70
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Explicit example: stripped 4pt amplitude

Natural parametrization for diagrammatic calculations: minimal

wmin
2k,n = 0

Thus off-shell and on-shell stripped vertices are equal.

4pt amplitude
2F 2M(1, 2, 3, 4) = −(s1,2 + s2,3)
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Explicit example: stripped 6pt amplitude

4F 4M(1, 2, 3, 4, 5, 6) =

=
(s1,2 + s2,3)(s1,4 + s4,5)

s1,3
+

(s1,4 + s2,5)(s2,3 + s3,4)

s2,4

+
(s1,2 + s2,5)(s3,4 + s4,5)

s3,5
− (s1,2 + s1,4 + s2,3 + s2,5 + s3,4 + s4,5)

This can be rewritten as

4F 4M(1, 2, 3, 4, 5, 6) =
1

2

(s1,2 + s2,3)(s1,4 + s4,5)

s1,3
− s1,2 + cycl ,
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Explicit example: stripped 8pt amplitude

8F 6M(1, 2, 3, 4, 5, 6, 7) =

= −1

2

(s1,2 + s2,3)(s1,4 + s4,7)(s5,6 + s6,7)

s1,3s5,7
− (s1,2 + s2,3)(s1,4 + s4,5)(s6,7 + s7,8)

s1,3s6,8

+
(s1,2 + s2,3)(s4,5 + s4,7 + s5,6 + s5,8 + s6,7 + s7,8)

s1,3
− 2s1,2 −

1

2
s1,4 + cycl
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Explicit example: stripped 10pt amplitude
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Generalization of reconstruction formula: subtractions
[Benincasa, Conde ’11] [Feng et al.’11] [KK,Novotny,Trnka ’12]

In introduction: A(z)→ 0 for z →∞
Suppose some deformation of the external momenta pk → pk(z) so that

A(z) ∼ zk for z →∞

we have to generalize and use the (k + 1)-times subtracted Cauchy
formula

A(z) =

n∑
i=1

Res (A; zi)

z − zi

k+1∏
j=1

z − aj
zi − aj

+

k+1∑
j=1

A(aj)

k+1∏
l=1,l 6=j

z − al
aj − al
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if for ai we have A(ai) = 0
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BCFW-like reconstruction of non-linear sigma model

for the first time we have used the amplitude methods for EFT

number of diagrams much lower

can be used for a proof of double Adler zero [conjectured in
N. Arkani-Hamed, F. Cachazo and J. Kaplan,: What is the Simplest

Quantum Field Theory? ’08]

drawback:

tailor-made for one special model, in special limit (two derivatives,
massless case, tree-level)

done using the ‘off-shell object’: this is against the amplitude idea

Lesson learnt:

low energy limit, the Adler zero, plays a role of gauge symmetry
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Scalar effective field theories
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Natural classification
Soft limit of one external leg of the tree-level amplitude

A(tp1, p2, . . . , pn) = O(tσ), as tp1 → 0

Interaction term
L = ∂mφn

Then another natural parameter is (counts the homogeneity)

ρ =
m− 2

n− 2

e.g.
L = ∂mφ4 + ∂m̃φ6

so these two diagrams can mix: p2m−2 ∼ pm̃ ⇒ ρ = ρ̃, i.e. rho is fixed
34/52



We want to focus on a non-trivial case

for: L = ∂mφn : m < σn

or

σ >
(n− 2)ρ+ 2

n

35/52



First case: ρ = 0 (i.e. two derivatives)

Schematically for single scalar case

L = 1
2(∂φ)2 +

∑
i

λi4(∂
2φ4) +

∑
i

λi6(∂
2φ6) + . . .

similarly for multi-flavour (φi: φ1, φ2, . . .).
non-trivial case

σ = 1

Outcome:

single scalar: free theory

multiple scalars (with flavour-ordering): non-linear sigma model

n.b. it represents a generalization of [Susskind, Frye ’70], [Ellis, Renner ’70]

36/52



Second case: ρ = 1, σ = 2 (double soft limit)
1. focus on the lowest combination and fix the form:

Lint = c2(∂φ · ∂φ)2 + c3(∂φ · ∂φ)3 condition: c3 = 4c42

2. find the symmetry

φ→ φ− bρxρ + bρ∂
ρφφ (again up to 6pt so far)

3. ansatz of the form

H
HHH

HHHj

��������)

cn(∂φ · ∂φ)n + cn+1(∂φ · ∂φ)n∂φ · ∂φ

4. in order to cancel: 2(n+ 1)cn+1 = (2n− 1)cn
i.e. c1 = 1

2 ⇒ c2 = 1
8 , c3 = 1

16 , c4 = 5
128 , . . .
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Second case: ρ = 1, σ = 2 (double soft limit)

4. in order to cancel: 2(n+ 1)cn+1 = (2n− 1)cn
i.e. c1 = 1

2 ⇒ c2 = 1
8 , c3 = 1

16 , c4 = 5
128 , . . .

solution:
L = −

√
1− (∂φ · ∂φ)

This theory known as a scalar part of the Dirac-Born-Infeld [1934] – DBI
action
Scalar field can be seen as a fluctuation of a 4-dim brane in five-dim
Minkowski space

Á

Remark: soft limit and symmetry are “equivalent”
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Third case: ρ = 2, σ = 2 (double soft limit)

Similarly to previous case we will arrive to a unique solution: the Galileon
Lagrangian

L =

d+1∑
n=1

dnφLdern−1

Ldern = εµ1...µdεν1...νd
n∏
i=1

∂µi∂νiφ

d∏
j=n+1

ηµjνj = −(d−n)! det
{
∂νi∂νjφ

}n
i,j=1

.

It possesses the Galilean shift symmetry

φ→ φ+ a+ bµx
µ

(leads to EoM of second-order in field derivatives)
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Surprise: ρ = 2, σ = 3 (enhanced soft limit)

general galileon: three parameters (in 4D)

only two relevant (due to dualities [de Rham, Keltner, Tolley ’14] [KK, Novotny ’14])

we demanded O(p3) behaviour

we have verified: possible up to very high-pt order

suggested new theory: special galileon [Cheung,KK,Novotny,Trnka

1412.4095]

symmetry explanation: hidden symmetry [K. Hinterbichler and

A. Joyce 1501.07600]

φ→ φ+ sµνx
µxν − 12λ4s

µν∂µφ∂νφ
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New recursion for effective theories

[Cheung, KK, Novotny, Shen, Trnka 2015]
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The high energy behaviour forbids a naive Cauchy formula

A(z) 6= 0 for z →∞

Can we instead use the soft limit directly?

yes!
The standard BCFW not applicable, we propose a special shift:

pi → pi(1− zai) on all external legs

This leads to a modified Cauchy formula∮
dz

z

A(z)

Πi(1− aiz)σ
= 0

note there are no poles at z = 1/ai (by construction).
Now we can continue in analogy with BCFW
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A Periodic Table of Effective Field Theories

[Cheung, KK, Novotny, Shen, Trnka 2016]
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Classification of EFTs

We use the set of four parameters:

(ρ, σ, v, d)

�

⇢

0 1 2 3

1

2

3

0

P(X) DBI

NLSM

Gal
sGal

trivial soft 
behavior

forbidden

4

WZW
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Photon scatterings

[Cheung, KK, Novotny, Shen, Trnka, Wen ’18]
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Spin-1 sector

we have followed same strategy as for spin-0

good to have some model in mind

there is one (from 1934): The Born-Infeld model

LBI = 1−
√

(−1)D−1det(ηµν + Fµν),

represents a nonlinear extension of Maxwell theory

a toy model of general gauge invariant Lagrangian

L = −1

4
〈FF 〉+ g

(1)
4 〈FFFF 〉+ g

(2)
4 〈FF 〉2 + g

(1)
6 〈FF 〉3

+ g
(2)
6 〈FFFF 〉〈FF 〉+ g

(3)
6 〈FFFFFF 〉+ . . . ,

〈. . .〉: traces over Lorentz indices
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Spin-1 sector
Bottom-up strategy: we have to calculate n-point amplitudes
It reminds very well known problem: “Euler-Heisenberg”, effective field
theory of light-by-light scattering:

Though, now, the power-counting is different.
Eg. at 6-pt we have to deal with

And so on for higher orders.
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Spin-1 sector - tree-level amplitudes
employing the spinor helicity formalism, the 4pt amplitudes:

A−−−− = c−〈12〉2〈34〉2 + perm

A−−++ = c+〈12〉2[34]2

important simplification: helicity conservation, i.e. c− = 0.
we can continue with higher orders
6pt:

1−

2−

4+

3−

5+

6+

A−−−+++ =
〈12〉2[56]2〈3|1 + 2|4]2

s124
+ perm.,
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Spin-1 sector

We can go to very high orders (impossible by conventional methods) and
study any sign of interesting behavior

Result
The studied amplitudes can be fixed by the following multi-chiral soft
limit:

lim
∼
λ−→ε or λ+→ε

A−−−+++ = O(ε)

Our conjecture: for any n-point amplitude we have this result, i.e.

A(1−2− . . . n−(n+ 1)+ . . . (n+m)+) = O(ε)
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Spin-1 sector

formally we have proved it using the supersymmetry
(BI theory corresponds to the pure bosonic sector of the EFT
describing spontaneous sym. breaking of N = 2 to N = 1 SUSY)

BI can also be fixed uniquely by a combination of soft limits and
dimensional reduction

discussed methods can be used to vector “Galileon-like” theories

L = F 2 + ∂2F 4 + ∂4F 6 + ∂6F 8 + . . . , (1)

we can construct the theory recursively, starting with

A−−++ = 〈12〉2[34]2s12
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Spin-2 sector

[work in progress]
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It looks like all this has nothing to do with gravity

Where is the gravity?
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all above theories appear also in the context of CHY-type
formulation [Cachazo, He, Yuan ’13]

any new theory or property can be used via the so-called double-copy

gravity = (YM)⊗ (YM)

(in this context: would be interesting to have a non-abelian
extension of our spin-1 study)

galileon itself is a remarkable theory: can be connected with a local
modification of gravity [Nicolis, Rattazzi, Trincherini ’09]. Important
also for cosmology (see e.g. [Chow,Khoury’09] or [de Rham and

Heisenberg ’11])

direct way?
footprint of modified gravity in scattering amplitudes →

48/52



spin-2 scattering

Naively one can expect a toy model given by a variation of

L ∼
√
−det(ηµν + ∂µφi∂νφi + Fµν)

to [Eddington ’24], [Deser, Gibbons ’98]

L ∼
√
−det(ηµν + ∂µφi∂νφi + Fµν +Rµν)

This wouldn’t work - simply due to the homogeneity reasons

Still we can use the spinor-helicity formalism and the little-group scaling
and start the systematic study → see next
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spin-2 scattering

n.b. spin-1: A4 = 〈12〉2〈34〉2

1−

2−

4+

3−

5+

6+

A6 = 〈12〉2[56]2〈3|1+2|4]2
s124

note that Acont
6 = 0.

spin-2: the “Born-Infeld” gravity

A4 = 〈12〉4〈34〉4

A6 =
〈12〉4[56]4〈3|1 + 2|4]4

s124
It is possible to write a contact term

Acont6 = (〈12〉〈23〉〈31〉)2([45][56][61])2sij

This is an ongoing study. . .
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Summary

We have offered different approach to the subject of this workshop via
systematic study of scattering amplitudes
Three-step process:

1 numerical study of all possible tree-level amplitudes (child’s play)

2 if something interesting, try to understand it better and prove it

3 use it in phenomenology, GR, cosmology. . . (most difficult part)

�

⇢

0 1 2 3

1

2

3

0

P(X) DBI

NLSM

Gal
sGal

trivial soft 
behavior

forbidden

4

WZW

−→+ 1 spin ⊙
BI

·?∂2BI

−→+ 1 spin
?

(should and can be done for fermions as well, see e.g. [Elvang et al. ’17])
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possible modification of GR → massive graviton

V (r) ∼ M

m2
P

1

r
e−mr

massless graviton: two degrees of freedom
massive graviton: five degrees, one can see them as 1 graviton
(massless), 1 photon and 1 scalar

We have to understand all possible theories of spin-1 and spin-0
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