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What will not be mentioned:

• heteroclinic tangles

• quantum chaos

• cellular automata

• Benford law

• time series and 1/𝑓

• algorithmic complexity



Edward Lorenz (1960)

Chaos: When the present determines the future, but 

the approximate present does not approximately 

determine the future.

Robert May (1976)

Not only in research, but also in the everyday world of politics 

and economics, we would all be better off if more people realised 

that simple nonlinear systems do not necessarily possess simple 

dynamical properties.

Summary



0. Logistic map

𝑥𝑛+1 = 𝑟𝑥𝑛(1 − 𝑥𝑛)

population (at time n+1)

growth rate

dying due to 

overpopulation

P.F. Verhulst, Recherches mathématiques sur la loi d'accroissement de la population,
Nouv. mém. de l'Academie Royale des Sci. et Belles-Lettres de Bruxelles 18, 1 (1845)



Logistic map

https://www.wolframalpha.com/input/?i=logistic+system

𝑥𝑛+1 = 𝑟𝑥𝑛(1 − 𝑥𝑛)

atractor

bifurcation

1 + 6 ≈ 3,45 3,57 - chaos

T.Y. Li, J.A. Yorke, Period three implies chaos,
Amer. Math. Monthly 82, 985, 1975

oscillation

(period 2)

https://www.wolframalpha.com/input/?i=logistic+system


1. Celestial mechanics



Two-body system
(bodies attracted to each other by the gravitation force)

Simplification:

• the bodies are negligibly small

• the bodies have no internal structure

(masses of the bodies are equal)



Two-body system
(bodies attracted to each other by the gravitation force)

periodic elliptic motion (1609 - Johannes Kepler and his laws)

Simplification:

• the bodies are negligibly small

• the bodies have no internal structure

(masses of the bodies are equal)



Two-body system

M = M = 5 m

(Simplification: motion restricted to a plane)

+ Third body

+



+

M = M = 5 m

periodic stable motion

+ Third bodyTwo-body system

(Simplification: motion restricted to a plane)



Three-body system
- unstable motion

blue satellite slightly shifted
1 km

+1 cm



Three-body system
- unstable motion



Poincaré’s Story: The planetary many-body problem

An unsolved problem for the competition:

Consider a system of arbitrarily many constituents that

attracts each other according to the Newton’s law of 

gravitation. Assuming that the constituents never collide,

find coordinates of any of them in the form of a well-

behaved function of time.

1887 

- At the occasion of the 60th birthday of Sweedish and Norwegian king 

Oscar II (to be celebrated in 1889), Sweedish mathematician Gösta

Mittag-Leffler announces a scientific competition with the aim of

finding a general solution of the many-body celestial system

- Prize for the winner: gold medal and 2500 golden crowns



1888 

- Henri Poincaré applies his work called The three-body problem and 

the equations of dynamics

- Karl Weierstrass, Charles Hermite, Gösta Mittag-Leffler as the jury of

the competition declare him the winner; The 160 pages long essay is

going to be published in Mittag-Leffler’s journal Acta Mathematica

- During the process of publication, the reviewer sends a comment to 

Poincaré, asking him to clarify some points

- After a period of silence, Poincaré comes out and withdraws the 

paper, having found a fatal error in his calculations

Henri Poincaré

(1854-1912)
1890

- Poincaré publishes at his expense (consuming the earned 2500 crowns) 

a corrected essay expanded to 270 pages, discovering a hidden richness

in the solutions of equations of motion, introducing topology to 

celestial mechanics, and cracking the lid of the Pandora’s box of chaos.

Poincaré’s Story: The planetary many-body problem

1887 

- At the occasion of the 60th birthday of Sweedish and Norwegian king 

Oscar II (to be celebrated in 1889), Sweedish mathematician Gösta

Mittag-Leffler announces a scientific competition with the aim of

finding a general solution of the many-body celestial system

- Prize for the winner: gold medal and 2500 golden crowns

• Chaos theory

• Quantum mechanics

• Theory of relativity

He establishes the first of the three 

pillars of the modern physics:



Three-body system
- unstable motion
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distance between the blue satellites
(left simulation – right simulation)

time t [h]

d [km]

Line slope –

Lyapunov exponent l

the bigger, the more unstable the system

𝛿 = 𝛿010
𝜆𝑡 Deviation grows exponentially

(How many times can you fold a 

piece of paper?)

7 times

12 times

Britney Gallivan *85



Lyapunov time

Examples
Hyperion (one of the Saturn’s moons):

36 days

- Rotation axis changes chaotically in time

- Consequence of the resonance with another Saturn’s moon 

Titan

𝜏 =
1

𝜆

Weather forecast: A couple of hours to days

Stadium billiard: Few seconds (a couple fo bounces)

Pinball game:

- estimates for how long one can predict the future of a system



Is the Solar system stable?

???



NO!

Lyapunov time:

50 to 500 million years

Wayne B. Hayes, Is the outer Solar System chaotic? Nature Physics 3, 689 (2007)
J. Laskar, M. Gastineau, Existence of collisional trajectories of Mercury, Mars and Venus with the Earth, Nature 459, 817 (2009)

J. Laskar a M. Gastineau (2009): 

• Calculate very precisely the future of the solar system, starting from 2501 initial conditions 

differing only in the Mars position (shifted by 0.38mm in each case)

• Obtain 20 collision solutions (i.e. about 1%) of various types:

• Mercury hits Venus

• Mercury falls into the Sun 

• Mercury deviates Mars onto a collision trajectory with the Earth

Consequence of the

rezonance between Jupiter 

and Mercury



KAM theorem
(Andrej Kolmogorov, Vladimir Arnol’d, Jürgen Moser, 1960)

Chaotic behaviour is caused by resonances – transfer of energy

between the components (degrees of freedom) of the system

Gaps in the Main asteroid belt

a
st

e
ro

id
 q

u
a
n
ti

ty

- caused by resonances of the asteroids’ 

orbits with Jupiter

distance from the Sun (AU)

(D. Kirkwood 1874)

Jupiter: 5,2 AUMars: 1,5 AU

The smaller the integers,

the stronger the resonance

The weakest resonance: 

golden ratio 
1+ 5

2
≈ 1.62



KAM theorem
(Andrej Kolmogorov, Vladimir Arnol’d, Jürgen Moser, 1960)

Chaotic behaviour is caused by resonances – transfer of energy

between the components (degrees of freedom) of the system

Gaps in the Main asteroid belt
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- caused by resonances of the asteroids’ 

orbits with Jupiter

distance from the Sun (AU)

(D. Kirkwood 1874)

Jupiter: 5,2 AUMars: 1,5 AU

The smaller the integers,

the stronger the resonance

The weakest resonance: 

golden ratio 
1+ 5

2
≈ 1.62

Gaps in the rings of Saturn

- consequence of resonaces with its moons



Reduced three-body problem
• M > M, third body with negligible mass m ≈ 0

• The motion of all the three bodies restricted to a plane

• Solved in the system connected with M, M

L4

M M

L5

L3 L2 L1

L1, ..., L5 – Lagrange points (equilibrium; centrifugal force cancels out gravitational force)

coordinate x

c
o
o
rd

in
a
te

y

Poincaré section

• „stroboscopic map“ – trajectory observed

only at specific times (for example when y=0)

• A plot of points (coordinate, velocity)

• In a system with just two degrees of 

freedom, each point of the section belongs 

to only one trajectory

Stable (quasiperiodic) trajectories and 

unstable (chaotic) trajectories can be 

distinguished with the naked eye.

N.B. This is what Poincaré considered in his essay.



Section 

plane:

y=0

direction

Earth - Moon

Trajectory (x,y)

coordinate x

velocity vx

Poincaré section (x,vx)

Chaotic

Reduced three-body problem



Hamiltonian systems

State of the system: 
a point in the 2f dimensional

phase space

Conservative system:

(Trajectories restricted to 2𝑓 − 1 dimensional hyperspace)

- connected to additional

symmetries of the system

Integrals of motion:

Integrable system: Number of independent 

integrals of motion

Number of degrees

of freedom f=
- Canonical transformation

to action-angle variables

Quasiperiodic

(regular) motion

on a torus

Nonintegrability:

prerequisite for chaos



2. Meteorology



Lorenz system
- simple model for atmospheric convection

𝒙: convection intensity

𝒚: temperature difference between 

the ascending and descending current

𝒛: distortion of vertical temperature 

profile from linearity

Bénard cellሶ𝑥 = 𝜎 𝑦 − 𝑥

ሶ𝑦 = 𝑥 𝜏 − 𝑧 − 𝑦

ሶ𝑧 = 𝑥𝑦 − 𝛽𝑧

3 variables (not spatial coordinates!) 3 parameters

𝝈: Prandtl number

𝝉: Rayleigh number

𝜷: physical proportion

Lorenz’s choice 𝜎 = 10, 𝜏 = 28, 𝛽 =
8

3

Edward N. Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci. 20, 130 (1963)



After a few time steps he gets qualitatively different weather.

Lorenz’s story

Lorenz was computing the “weather forecast” using his model.

The computer precision was 6 digits (x=14,7139 m/s), but the 

terminal output was rounded to 3 digits (x=14,7 m/s).

intensity x

time t

In the evening Lorenz wrote down a partial result. The following 

day he resumed the calculation using rounded value (I=14,7 m/s).

1963: One flap of the sea gull wings may affect the weather far away.

1972: Does the flap of a Butterfly’s wings in Brasil set off a tornado in Texas?



After a few time steps he gets qualitatively different weather.

Lorenz’s story

Lorenz was computing the “weather forecast” using his model.

The computer precision was 6 digits (x=14,7139 m/s), but the 

terminal output was rounded to 3 digits (x=14,7 m/s).

intensity x

time t

In the evening Lorenz wrote down a partial result. The following 

day he resumed the calculation using rounded value (I=14,7 m/s).

1963: One flap of the sea gull wings may affect the weather far away.

1972: Does the flap of a Butterfly’s wings in Brasil set off a tornado in Texas?

The Butterfly Effect

metaphor for the physical chaos

- sensitivity to initial conditions

- sensitivity to tiny perturbations

„The butterfly, with its seeming frailty and lack of 

power, is a natural choice for a symbol of the small 

that can produce the great.“

Solution in the form of the 

strange attractor

(fractal dimension d=2,04)

(it resembles the wings of a butterfly)



3. Double pendulum



When you see it, you must have it.

Double pendulum construction.





When the construction has been successful.



Angular momenta
(associated with the angles j)

Double pendulum Hamiltonian

Integrable for g = 0 (no gravity)  

L1 is then the additional integral of motion 

L. Perotti, Phys. Rev. E 34, 066218 (2004)

3 fundamental parameters

- in the following considered only the case 

𝑚 = 𝑙 = 1 (equal masses and lengths) 

and 𝛾 = 0 (no gravity) or 𝛾 = 1



Poincaré sections

g = 1 E = 12

ordered case – “circles”

chaotic case 

– “fog” of 

points

Section at 

j2 = 0

We plot a point each 

time M2 crosses the 

marked yellow line

Various initial conditions at energy E = 12



Fraction of regularity

Measure of classical chaos

Total kinematically

accessible surface of 

the section

Surface of the section 

covered with regular 

trajectories

g = 1 E = 12



REGULAR area

CHAOTIC area
freg=0.29

g = 1 E = 12Measure of classical chaos

Total kinematically

accessible surface of 

the section

Surface of the section 

covered with regular 

trajectories

Fraction of regularity



freg depends on energy!

(a) E = 1

(b) E = 5

(c) E = 14

(c)

(a)

(b)

g = 1Small amplitude 

vibrations

The dominion of chaos

Regular vibrations



Regular: at most 

polynomial divergence
Chaotic: exponential 

divergence

Quasiperiodic X unstable trajectories

1. Lyapunov exponent

Divergence of two neighboring trajectories

2. SALI (Smaller Alignment Index)

• fast convergence towards zero for chaotic trajectories

Ch. Skokos, J. Phys. A: Math. Gen 34, 10029 (2001); 37 (2004), 6269

• two divergencies



Fractals





Fractal structure

- selfsimilarity- a part looks like the whole

- property of many natural object



Length of the sea coastline

1 km
100 km

Fractal structure



Fractal (fractional) dimension
Length of the sea coastline (Great Britain)

Benoît Mandelbrot, How long is the coast of Britain? Statistical self-similarity and fractional dimension, 
Science 156, 636 (1967) 

Measure length l:

Number of mesurements N:

Length of the coastline:

200 km

12

2400 km

100 km

28

2800 km

50 km

68

3400 km

1950 – Lewis F. Richardson studies the correlation between the 

tendency of countries to declare a war and the length of their 

common border

He finds out that the border lengths taken from different 

sources vary extremely. Today’s values for the GB:

- Ordance Survey: 17 820 km

- Coastal Guide Europe: 18 838 km

- CIA World Factbook: 12 429 km (includes Northern Ireland)

line slope: fractal dimension d ≈ 1,25

log N

log (1/l)



Fractal (fractional) dimension
Length of the sea coastline (Great Britain)

Benoît Mandelbrot, How long is the coast of Britain? Statistical self-similarity and fractional dimension, 
Science 156, 636 (1967) 

Measure length l:

Number of mesurements N:

Length of the coastline:

200 km

12

2400 km

100 km

28

2800 km

50 km

68

3400 km

1950 – Lewis F. Richardson studies the correlation between the 

tendency of countries to declare a war and the length of their 

common border

He finds out that the border lengths taken from different 

sources vary extremely. Today’s values for the GB:

- Ordance Survey: 17 820 km

- Coastal Guide Europe: 18 838 km

- CIA World Factbook: 12 429 km (includes Northern Ireland)

line slope: fractal dimension d ≈ 1,25

log N

log (1/l)

1,25

1,15



Fractal dimension - examples

Great Britain

1,25

cauliflower

log(13)/log(3) ≈ 2,33

fern

1,6

broccoli

2,66

Norsko

1,52

mozek

2,79

lungs

2,98

Lorenz’s strange atractor

2,05



Artificial fractals
Koch curve:
(Helge von Koch, 1904)

...
- fractal dimension

Sierpińsky triangle:
(Wacław Sierpińsky, 1915) ...

Apollonian circles:

-fractal dimension

(depends on the type)

... and more and more



Mandelbrot set

A set of all complex numbers c, 

for which the series

is bounded

YouTube animation: https://www.youtube.com/watch?v=PD2XgQOyCCk

https://www.youtube.com/watch?v=PD2XgQOyCCk
https://www.youtube.com/watch?v=PD2XgQOyCCk


Mandelbrot set

- 1975 introduces the notion fractal

- 1980 uses the computer to draw the 

Mandelbrot set for the first time

Benoît Mandelbrot 

- 1978 – defined by Robert W. Brooks

and Peter Matelski, giving the first 

sketch of its shape

- fractal dimension of the border d=2



Mandelbrot set

- 1975 introduces the notion fractal

- 1980 uses the computer to draw the 

Mandelbrot set for the first time

Benoît Mandelbrot 

- 1978 – defined by Robert W. Brooks

and Peter Matelski, giving the first 

sketch of its shape

- fractal dimension of the border d=2



Application of the fractals – computer graphics

- computer games, movies (Star Trek II: The Wrath of Khan - 1982)

- generating of structures with given fractal dimension



4. Chaos in curved spaces



Geometrical embedding

Hamiltonian in the flat Eucleidian

space with a potential:

Why embedding: 

• Riemannian geometry brings in the notion of curvature that could help clarify 

the sources of instability, and in the same time quantify the amount of chaos in 

non-ergodic systems

Bridge: 

• The equations of motion (Hamilton, Newton) correspond with the geodesic equation

L. Casetti, M. Pettini, E.D.G. Cohen, Phys. Rep. 337, 237 (2000)

Potential

Trajectory
x

y

Hamiltonian of a free particle 

in a curved space:

A suitable metric gij

Geodesic

curvature
topology



Geodesics & Maps
- Generalization of a straight line

- Describe  a ”free motion” in a curved space

- “Shortest path” between two points

Visualisation of a curved space - mapping onto the flat space

Paris -> Mexico

Prague

In reality, other effects are taken into 

account – winds, jet stream, air traffic



Flat space
(dynamics)

Curved space
(geometry)

Potential energy

Time

Forces

Curvature of the potential

Metric

Arc-length

Christoffel’s symbols

Riemannian tensor

Ricci tensor

Scalar curvature

Trajectories

Hamiltonian equations of motion

Geodesics

Geodesic equation

Tangent dynamics equation
Equation of the geodesic 

deviation (Jacobi equation)

Lyapunov exponent



Examples of embedding

1. Jacobi metric

- conformal

- length element

- nonzero scalar curvature

L. Casetti, M. Pettini, E.D.G. Cohen, Phys. Rep. 337, 237 (2000)

M. Pettini, Geometry and Topology in Hamiltonian Dynamics and Statistical Mechanics (Springer New York, 2007)

(záporná pouze pro DV < 0)

2. Eisenhart metric

- manifold dimension extended by two

- length element = time element

- only one nonvanishing Christoffel symbol

- vanishing scalar curvature



Curvature and instability

• R = const Equation of the 

geodetic deviation:

Equation of motion

• harmonic oscillator with frequency

• exponential growth with Lyapunov exponent

(izotropní varieta)

• R < 0 Unstable motion with estimated Lyapunov exponent 

• dim f = 2

stable R > 0

unstable R < 0

Parametric instability – R is not sufficient to determine chaotic motion

Equation of motion of a harmonic oscillator with its length (stiffness) modulated in time

Unstable if the frequency is in resonance with any of the frequency of the 

Fourier expansion, even if R(s) > 0 on the whole manifold:



Curvature and instability
Besides solving the equation for the geodesic deviation, can one deduce 

something about the instability only from the curvature?

3. Israeli metric

Using the Israeli metric and connection form, the equation of the geodesic deviation 

is expressed as

- projector into a direction 

orthogonal to the velocity

Stability matrix

Conjecture: A negative eigenvalue of the Stability matrix     inside 

the kinematically accessible area induces instability of the motion.

L. Horwitz et al., Phys. Rev. Lett. 98, 234301 (2007)

Kinematically accessible area

Negative lower eigenvalue of V

Negative higher eigenvalue of V

Example of unstable configuration



Properties of the stability matrix

1. When           is big enough,    becomes the Hessian matrix for the tangent dynamics

2. Eigenvalues can only decrease within the kinematically accessible domain

The size of the negative eigenvalue region can only 

grow with energy, or remain the same

3. The lower eigenvalue      is continuous on the boundary of the accessible domain

f = 2

condition for inflexion points 

of the curve 

4. The lower eigenvalue      is zero on the boundary when

concave

convex

The curvature-based criterion for the 

onset of chaos can be partly

translated into the language of the 

shape of the equipotential contours.

concave potential 

surface - dispersing

convex potential 

surface - focusing



Instability threshold
Scenario A - Penetration

- region of negative     , which exists 

outside the accessible region, starts 

overlapping with it at some energy E

- equipotential contours undergoes the 

convex-concave transition 



Instability threshold
Scenario A - Penetration

- region of negative     , which exists 

outside the accessible region, starts 

overlapping with it at some energy E

- equipotential contours undergoes the 

convex-concave transition 



Instability threshold
Scenario B - CreationScenario A - Penetration

- region of negative     , which exists 

outside the accessible region, starts 

overlapping with it at some energy E

- region of negative      eventually 

appears somewhere inside the 

accessible region at some energy E

- all the equipotential contours convex- equipotential contours undergoes the 

convex-concave transition - necessary condition



Závěr

Klasická fyzika je deterministická, ale jelikož je nemožné mít k dispozici absolutně 

přesné polohy a hybnosti všech těles a absolutně přesnou výpočetní sílu, budoucnost 

nelze předpovědět. Předpověditelnost je omezena Ljapunovovým časem.

Deterministický chaos

Na co se nedostalo:

• heteroklinická změť

• chaos v kvantové fyzice

• komplexní systémy

• celulární automaty

• Benfordův zákon

• časové řady a 1/f šum

• algoritmická komplexita

DÍKY ZA POZORNOST

Edward Lorenz (1960): Přítomnost jasně udává budoucnost, 

ale přibližná přítomnost neudává budoucnost ani přibližně.





Fyzika 1. druhu - kódování

Pozorováním světa a prováděním experimentů získáváme 

jednoduchá pravidla, kterými se svět řídí 

- (přírodní) zákony

- rovnice
Newton (1680)

Fyzika 2. druhu - dekódování

Zabýváme se detailně důsledky pravidel a zákonů

- Co se stane, když zákony upravíme nebo pozměníme?

- Jaká jsou všechna možná řešení rovnic 

(tedy i ta, která bezprostředně nepozorujeme)?

???


