FROM GRAVITON TO

 CHAOS

 CHAOS

 Pavel Stránský

 Pavel Stránský
 www.pavelstransky.cz

6th April 2018

... to be gradually converted into

6th April 2018

Outline

Summary

0. Logistic map
1. Celestial mechanics
2. Meteorology
3. Double pendulum
4. Fractals
5. Chaos in curved spaces
6. The invariant set postulate

What will not be mentioned:

- heteroclinic tangles
- quantum chaos
- cellular automata
- Benford law
- time series and $1 / f$
- algorithmic complexity

Summary

Edward Lorenz (1960)

Chaos: When the present determines the future, but the approximate present does not approximately determine the future.

Robert May (1976)

Not only in research, but also in the everyday world of politics and economics, we would all be better off if more people realised that simple nonlinear systems do not necessarily possess simple dynamical properties.

O. Logistic map

1. Celestial mechanics

Two-body system

(bodies attracted to each other by the gravitation force)

(masses of the bodies are equal)
Simplification:

- the bodies are negligibly small
- the bodies have no internal structure

Two-body system

(bodies attracted to each other by the gravitation force)

(masses of the bodies are equal)
Simplification:

- the bodies are negligibly small
- the bodies have no internal structure

Two-body system + Third body

$$
M=M=5 m
$$

(Simplification: motion restricted to a plane)

Two-body system + Third body

$$
M=M=5 \mathrm{~m}
$$

(Simplification: motion restricted to a plane)

Three-body system

- unstable motion
blue satellite slightly shifted

Three-body system

- unstable motion

Poincaré's Story: The planetary many-body problem

1887

- At the occasion of the 60th birthday of Sweedish and Norwegian king Oscar II (to be celebrated in 1889), Sweedish mathematician Gösta Mittag-Leffler announces a scientific competition with the aim of finding a general solution of the many-body celestial system Prize for the winner: gold medal and 2500 golden crowns

Poincaré's Story: The planetary many-body problem

1887

- At the occasion of the 60th birthday of Sweedish and Norwegian king Oscar II (to be celebrated in 1889), Sweedish mathematician Gösta Mittag-Leffler announces a scientific competition with the aim of finding a general solution of the many-body celestial system
- Prize for the winner: gold medal and 2500 golden crowns

1888

- Henri Poincaré applies his work called The three-body problem and the equations of dynamics

He establishes the first of the three pillars of the modern physics:

- Chaos theory
- Quantum mechanics
- Theory of relativity
in the solutions of equations of motion, introducing topology to celestial mechanics, and cracking the lid of the Pandora's box of chaos.

Three-body system

- unstable motion
distance between the blue satellites
(left simulation - right simulation) $\quad \delta=\delta_{0} 10^{\lambda t}$ $\delta\left[\mathrm{km}{ }^{100}\right.$

Line slope Lyapunov exponent λ

the bigger, the more unstable the system

Deviation grows exponentially
(How many times can you fold a piece of paper?)

7 times

Britney Gallivan *85 12 times

Lyapunov time $\quad \tau=\frac{1}{\lambda}$

- estimates for how long one can predict the future of a system

Examples

Hyperion (one of the Saturn's moons):

- Rotation axis changes chaotically in time
- Consequence of the resonance with another Saturn's moon Titan

Weather forecast: A couple of hours to days

Stadium billiard:
Few seconds (a couple fo bounces)

Pinball game:

???

Is the Solar system stable?

NO!

J. Laskar a M. Gastineau (2009):

- Calculate very precisely the future of the solar system, starting from 2501 initial conditions differing only in the Mars position (shifted by 0.38 mm in each case)
- Obtain 20 collision solutions (i.e. about 1\%) of various types:
- Mercury hits Venus
- Mercury falls into the Sun
- Mercury deviates Mars onto a collision trajectory with the Earth

KAM theorem

(Andrej Kolmogorov, Vladimir Arnol'd, Jürgen Moser, 1960)
Chaotic behaviour is caused by resonances - transfer of energy between the components (degrees of freedom) of the system

Gaps in the Main asteroid belt (D. Kirkwood 1874)

- caused by resonances of the asteroids' orbits with Jupiter

Mars: $1,5 \mathrm{AU}$ distance from the Sun (AU) Jupiter: 5,2 AU

KAM theorem

(Andrej Kolmogorov, Vladimir Arnol'd, Jürgen Moser, 1960)
Chaotic behaviour is caused by resonances - transfer of energy between the components (degrees of freedom) of the system

Gaps in the Main asteroid belt (D. Kirkwood 1874)

Gaps in the rings of Saturn

- consequence of resonaces with its moons

Reduced three-body problem

- $M>M$, third body with negligible mass $m \approx 0$
- The motion of all the three bodies restricted to a plane
- Solved in the system connected with M, M

Poincaré section

- „stroboscopic map" - trajectory observed only at specific times (for example when $y=0$)
- A plot of points (coordinate, velocity)
- In a system with just two degrees of freedom, each point of the section belongs to only one trajectory

Stable (quasiperiodic) trajectories and unstable (chaotic) trajectories can be distinguished with the naked eye.
coordinate x
L_{1}, \ldots, L_{5} - Lagrange points (equilibrium; centrifugal force cancels out gravitational force)
N.B. This is what Poincaré considered in his essay.

Reduced three-body problem

Hamiltonian systems

$$
\begin{gathered}
H=H\left(p_{1}, \ldots p_{f}, q_{1}, \ldots, q_{f}\right) \\
\dot{p}_{i}=-\frac{\partial H}{\partial q_{i}} \quad \dot{q}_{i}=\frac{\partial H}{\partial p_{i}}
\end{gathered}
$$

State of the system: a point in the $2 f$ dimensional phase space

Conservative system: $\quad H\left(p_{1}, \ldots p_{f}, q_{1}, \ldots, q_{f}\right)=E$
(Trajectories restricted to $2 f-1$ dimensional hyperspace)

Integrals of motion:

- connected to additional symmetries of the system

Integrable system:

- Canonical transformation to action-angle variables $\tilde{H}=\tilde{H}\left(J_{1}, \ldots, J_{f}\right)$
$\dot{J}_{i}=0 \quad \dot{\phi}_{i}=\frac{\partial \tilde{H}}{\partial J_{i}} \equiv \omega_{i}\left(J_{1}\right.$,

$$
\begin{aligned}
& I_{i}=I_{i}\left(p_{1}, \ldots p_{f}, q_{1}, \ldots, q_{f}\right) \\
& \left\{I_{i}, I_{j}\right\}_{\text {Poisson }}=0
\end{aligned}
$$

2. Meteorology

Lorenz system

- simple model for atmospheric convection

$$
\begin{aligned}
\dot{x} & =\sigma(y-x) \\
\dot{y} & =x(\tau-z)-y \\
\dot{z} & =x y-\beta z
\end{aligned}
$$

Bénard cell

3 variables (not spatial coordinates!)
x : convection intensity
y : temperature difference between the ascending and descending current z : distortion of vertical temperature profile from linearity

3 parameters
σ : Prandtl number
τ : Rayleigh number
$\boldsymbol{\beta}$: physical proportion

$$
\text { Lorenz's choice } \quad \sigma=10, \tau=28, \beta=\frac{8}{3}
$$

Lorenz's story

Lorenz was computing the "weather forecast" using his model. The computer precision was 6 digits ($x=14,7139 \mathrm{~m} / \mathrm{s}$), but the terminal output was rounded to 3 digits ($x=14,7 \mathrm{~m} / \mathrm{s}$).
intensity x

In the evening Lorenz wrote down a partial result. The following day he resumed the calculation using rounded value ($l=14,7 \mathrm{~m} / \mathrm{s}$). After a few time steps he gets qualitatively different weather.

1963: One flap of the sea gull wings may affect the weather far away.
1972: Does the flap of a Butterfly's wings in Brasil set off a tornado in Texas?

Lorenz's story

The Butterfly Effect metaphor for the physical chaos

„The butterfly, with its seeming frailty and lack of power, is a natural choice for a symbol of the small that can produce the great."

- sensitivity to initial conditions
- sensitivity to tiny perturbations

Solution in the form of the strange attractor (fractal dimension $d=2,04$)

1963: One flap of the sea gull wings may affect the
1972: Does the flap of a Butterfly's wings in Brasil

3. Double pendulum

When you see it, you must have it.

Double pendulum construction.

When the construction has been successfut.

Double pendulum Hamiltonian

Poincaré sections

Various initial conditions at energy $E=12$

Fraction of regularity

Measure of classical chaos

Surface of the section covered with regular trajectories

Total kinematically accessible surface of the section

Fraction of regularity

Measure of classical chaos

Surface of the section covered with regular trajectories

$$
f_{\mathrm{reg}}=\frac{S_{\mathrm{reg}}}{S_{\text {tot }}}
$$

Total kinematically accessible surface of the section

REGULAR area
CHAOTIC area

$f_{\text {reg }}$ depends on energy!

$$
\gamma=1
$$

(a) $E=1$

L_{1}

(b) $E=5$

Quasiperiodic X unstable trajectories

1. Lyapunov exponent
$\lambda \equiv \max _{\delta(0)} \lim _{t \rightarrow \infty} \frac{1}{t} \ln \frac{|\delta(t)|}{|\delta(0)|}$

Regular: at most polynomial divergence

Divergence of two neighboring trajectories

2. SALI (Smaller Alignment Index)

$\operatorname{SALI}(t)=\min \left\{\left|\frac{\delta_{1}(t)}{\left|\delta_{1}(t)\right|}+\frac{\delta_{2}(t)}{\left|\delta_{2}(t)\right|}\right|,\left|\frac{\delta_{1}(t)}{\left|\delta_{1}(t)\right|}-\frac{\delta_{2}(t)}{\left|\delta_{2}(t)\right|}\right|\right\} \in[0, \sqrt{2}]$

- two divergencies
- fast convergence towards zero for chaotic trajectories

Fractals

Fractal structure

Length of the sea coastline

Fractal (fractional) dimension

Length of the sea coastline (Great Britain)
1950 - Lewis F. Richardson studies the correlation between the tendency of countries to declare a war and the length of their common border
He finds out that the border lengths taken from different sources vary extremely. Today's values for the GB:

- Ordance Survey: 17820 km
- Coastal Guide Europe: 18838 km

- CIA World Factbook: 12429 km (includes Northern Ireland)

Fractal (fractional) dimension

Length of the sea coastline (Great Britain)

1950 - Lewis F. Richardson studies the correlation between the

Abstract

Geographical curves are so involved in their detail that their lengths are often infinite or, rather, undefinable. However, many are statistically "selfsimilar," meaning that each portion can be considered a reduced-scale image of the whole. In that case, the degree of complication can be described by a quantity D that has many properties of a "dimension," though it is fractional; that is, it exceeds the value unity associated with the ordinary, rectifiable, curves.

Fractal dimension - examples

Artificial fractals

Koch curve:
(Helge von Koch, 1904)

- fractal dimension

$$
d=\frac{\log 4}{\log 3} \approx 1.26
$$

Sierpińsky triangle: (Wacław Sierpińsky, 1915)

$$
d=\frac{\log 3}{\log 2} \approx 1.59
$$

Apollonian circles:

-fractal dimension (depends on the type)
... and more and more

Mandelbrot set

A set of all complex numbers c, for which the series

$$
z_{n+1}=z_{n}^{2}+c
$$

is bounded

Mandelbrot set

- 1978 - defined by Robert W. Brooks and Peter Matelski, giving the first sketch of its shape
- fractal dimension of the border $\boldsymbol{d}=\mathbf{2}$

Benoît Mandelbrot

- 1975 introduces the notion fractall
- 1980 uses the computer to draw the Mandelbrot set for the first time

Mandelbrot set

- 1978 - defined by Robert W. Brooks and Peter Matelski, giving the first sketch of its shape
- fractal dimension of the border $\boldsymbol{d}=\mathbf{2}$

- 1975 introduces the notion fractal
- 1980 uses the computer to draw the Mandelbrot set for the first time

Application of the fractals - computer graphics

- generating of structures with given fractal dimension
- computer games, movies (Star Trek II: The Wrath of Khan - 1982)

4. Chaos in curved spaces

Geometrical embedding

Hamiltonian in the flat Eucleidian space with a potential:

Hamiltonian of a free particle in a curved space:

$$
H=\frac{1}{2 M} \boldsymbol{p}^{2}+V(\boldsymbol{x}) \quad H^{\prime}=\frac{1}{2 M} g_{i j}(\boldsymbol{x}) p^{i} p^{j}
$$

Bridge:

- The equations of motion (Hamilton, Newton) correspond with the geodesic equation Why embedding:
- Riemannian geometry brings in the notion of curvature that could help clarify the sources of instability, and in the same time quantify the amount of chaos in non-ergodic systems

[^0]
Geodesics \& Maps

- Generalization of a straight line
- Describe a "free motion" in a curved space
- "Shortest path" between two points

Visualisation of a curved space - mapping onto the flat space

Flat space

(dynamics)

Curved space

(geometry)

Potential energy
Time
Forces
Curvature of the potential $\partial^{2} V,(\partial V)^{2}$

Metric $\quad g_{i j}$
Arc-length s
Christoffel's symbols $\quad \Gamma_{j k}^{i}$
Riemannian tensor
Ricci tensor $\quad R_{j k l}^{i}, R_{j l}=R_{j l}^{i}, R=g^{j l} R_{j l}$
Scalar curvature

Geodesics

Geodesic equation

$$
\frac{\mathrm{d} x^{i}}{\mathrm{~d} t}=\frac{\partial H}{\partial p_{i}} \quad \frac{\mathrm{~d} p_{i}}{\mathrm{~d} t}=-\frac{\partial H}{\partial x^{i}}
$$

Tangent dynamics equation

$$
\frac{\mathrm{d}^{2} \delta^{i}}{\mathrm{~d} t^{2}}+\left(\frac{\partial^{2} V}{\partial x^{i} \partial x^{j}}\right) \delta^{j}=0
$$

Equation of the geodesic deviation (Jacobi equation)

$$
\frac{\mathrm{d}^{2} x^{i}}{\mathrm{~d} s^{2}}+\Gamma_{j k}^{i} \frac{\mathrm{~d} x^{j}}{\mathrm{~d} s} \frac{\mathrm{~d} x^{k}}{\mathrm{~d} s}=0
$$

$$
\frac{\mathrm{D}^{2} \delta^{i}}{\mathrm{~d} s^{2}}+R_{j k l}^{i} \frac{\mathrm{~d} x^{j}}{\mathrm{~d} s} \delta^{k} \frac{\mathrm{~d} x^{l}}{\mathrm{~d} s}=0
$$

$$
\begin{equation*}
\tilde{x}^{i}(t)=x^{i}(t)+\delta^{i}(t) \tag{t}
\end{equation*}
$$

Lyapunov exponent $\lambda=\max _{\boldsymbol{\delta}(\mathbf{0}} \lim _{t \rightarrow \infty} \frac{1}{t} \ln \frac{|\boldsymbol{\delta}(t)|}{|\boldsymbol{\delta}(0)|}$

Examples of embedding

1. Jacobi metric

- conformal
- length element

$$
g_{i j}=2[E-V(\boldsymbol{x})] \delta_{i j}
$$

- nonzero scalar curvature $\quad R^{(N=2)}=\frac{(\nabla V)^{2}}{(E-V)^{3}}+\frac{\Delta V}{(E-V)^{2}}$

2. Eisenhart metric

- manifold dimension extended by two

$$
\mathrm{M} \times \mathbb{R}^{2} \quad\left(x^{0}=t, x^{1}, \ldots, x^{N}, x^{N+1}\right)
$$

- length element $=$ time element $\left.\mathrm{d}^{2}=\delta_{i j} \mathrm{~d} x^{i} \mathrm{~d} x^{j}-2 V(\boldsymbol{x}) \mathrm{d} x^{0} \mathrm{~d} x^{0}+2 \mathrm{~d} x^{0} \mathrm{~d} x^{N+1}=\mathrm{d} t^{2}\right)$
- only one nonvanishing Christoffel symbol $\quad \Gamma_{00}^{i}=\frac{\partial V}{\partial x^{i}}$
- vanishing scalar curvature $\quad R=0$

Curvature and instability

- $R=$ const
(izotropní varieta)
$\begin{aligned} & \text { Equation of the } \\ & \text { geodetic deviation: }\end{aligned} \quad \frac{\mathrm{d}^{2} \xi^{i}}{\mathrm{~d} s^{2}}+\frac{1}{2} R \xi^{i}=0$
Equation of motion
- harmonic oscillator with frequency $\omega=\sqrt{R / 2}$
- exponential growth with Lyapunov exponent

$$
l=\sqrt{-R / 2}
$$

unstable $R<0$

- $R<0 \quad$ Unstable motion with estimated Lyapunov exponent $l \geq \sqrt{-\max R / 2}$
- $\operatorname{dim} f=2 \quad \frac{\mathrm{~d}^{2} \xi^{i}}{\mathrm{~d} s^{2}}+\frac{1}{2} R(s) \xi^{i}=0 \quad R(s)=R_{0}+\sum_{n=1}^{\infty}\left[a_{n} \cos (n \omega s)+b_{n} \sin (n \omega s)\right]$

Equation of motion of a harmonic oscillator with its length (stiffness) modulated in time Unstable if the frequency $\omega_{0}=\sqrt{R_{0} / 2}$ in resonance with any of the frequency of the Fourier expansion, even if $R(\mathrm{~s})>0$ on the whole manifold:

Parametric instability - R is not sufficient to determine chaotic motion

Curvature and instability

Besides solving the equation for the geodesic deviation, can one deduce something about the instability only from the curvature?
3. Israeli metric

$$
g_{i j}^{E}=\frac{E}{|E-V(\boldsymbol{x})|} \delta_{i j}
$$

Using the Israeli metric and connection form, the equation of the geodesic deviation is expressed as

$$
\frac{\mathrm{D}^{2} \boldsymbol{\delta}}{\mathrm{~d} t^{2}}=-\mathcal{V} \mathcal{P} \boldsymbol{\delta}
$$

$$
\mathcal{P}^{i j}=\delta^{i j}-\frac{v^{i} v^{j}}{\boldsymbol{v}^{2}} \quad \begin{aligned}
& \text { - projector into a direction } \\
& \text { orthogonal to the velocity }
\end{aligned}
$$

$$
\mathcal{V}_{i j}=\frac{3}{M^{2} \boldsymbol{v}^{2}} \frac{\partial V}{\partial x^{i}} \frac{\partial V}{\partial x^{j}}+\frac{1}{M} \frac{\partial^{2} V}{\partial x^{i} \partial x^{j}}
$$

Stability matrix
Conjecture: A negative eigenvalue of the Stability matrix \mathcal{V} inside the kinematically accessible area induces instability of the motion.

Example of unstable configuration
__ Kinematically accessible area
-------- Negative lower eigenvalue of V
-------- Negative higher eigenvalue of V

Properties of the stability matrix

$$
\mathcal{S}_{i j}=\frac{1}{M}\left[\frac{3}{2|K(\boldsymbol{x})|} \partial_{i} V \partial_{j} V+\partial_{i j}^{2} V\right]
$$

1. When $|K(\boldsymbol{x})|$ is big enough, \mathcal{S} becomes the Hessian matrix for the tangent dynamics
2. Eigenvalues can only decrease within the kinematically accessible domain

$$
f=2
$$

4
The size of the negative eigenvalue region can only grow with energy, or remain the same
3. The lower eigenvalue λ_{-}is continuous on the boundary of the accessible domain
4. The lower eigenvalue λ_{-}is zero on the boundary when

Instability threshold

Scenario A - Penetration

$$
E=-0.4
$$

$$
\begin{aligned}
& V=A\left(x^{2}+y^{2}\right)+B x\left(x^{2}-3 y^{2}\right)+C\left(x^{2}+y^{2}\right)^{2} \\
& A \approx-0.588 \quad B \approx 0.809 \quad C=1 \\
& \text { - region of negative } \lambda_{-} \text {, which exists } \\
& \text { outside the accessible region, starts } \\
& \text { overlapping with it at some energy } E \\
& \text { - equipotential contours undergoes the } \\
& \text { convex-concave transition }
\end{aligned}
$$

Instability threshold

Scenario A - Penetration

$E=-0.4$

$$
\begin{aligned}
& V=A\left(x^{2}+y^{2}\right)+B x\left(x^{2}-3 y^{2}\right)+C\left(x^{2}+y^{2}\right)^{2} \\
& A \approx-0.588 \quad B \approx 0.809 \quad C=1 \\
& \text { - region of negative } \lambda_{-} \text {, which exists } \\
& \text { outside the accessible region, starts } \\
& \text { overlapping with it at some energy } E \\
& \text { - equipotential contours undergoes the } \\
& \text { convex-concave transition }
\end{aligned}
$$

Instability threshold

Scenario A - Penetration $E=0.5$

$$
\begin{aligned}
& V=A\left(x^{2}+y^{2}\right)+B x\left(x^{2}-3 y^{2}\right)+C\left(x^{2}+y^{2}\right)^{2} \\
& A \approx-0.588 \quad B \approx 0.809 \quad C=1 \\
& \text { - region of negative } \lambda_{-} \text {, which exists } \\
& \text { outside the accessible region, starts } \\
& \text { overlapping with it at some energy } E \\
& \text { - equipotential contours undergoes the } \\
& \text { convex-concave transition }
\end{aligned}
$$

Scenario B - Creation

$$
\begin{aligned}
V & =5 \rho+\rho^{2}+4 \rho^{3}+\rho^{4} \\
\rho & =r-r_{0} \quad r_{0} \approx 2.973
\end{aligned}
$$

- region of negative λ_{-}eventually appears somewhere inside the accessible region at some energy E
- all the equipotential contours convex - necessary condition $\partial_{x x}^{2} V+\partial_{y y}^{2} V<0$

Závěr

Edward Lorenz (1960): Přítomnost jasně udává budoucnost, ale přibližná přítomnost neudává budoucnost ani přibližně.

Klasická fyzika je deterministická, ale jelikož je nemožné mít k dispozici absolutně přesné polohy a hybnosti všech těles a absolutně přesnou výpočetní sílu, budoucnost nelze předpovědět. Předpověditelnost je omezena Ljapunovovým časem.

Deterministický chaos

Na co se nedostalo:

- heteroklinická změt'
- chaos v kvantové fyzice
- komplexní systémy
- celulární automaty
- Benfordův zákon
- časové řady a $1 / f$ šum
- algoritmická komplexita

Fyzika 1. druhu - kódování

Pozorováním světa a prováděním experimentů získáváme jednoduchá pravidla, kterými se svět řídí

- (přírodní) zákony
- rovnice

Fyzika 2. druhu - dekódování

Zabýváme se detailně důsledky pravidel a zákonů

- Co se stane, když zákony upravíme nebo pozměníme?
- Jaká jsou všechna možná řešení rovnic (tedy i ta, která bezprostředně nepozorujeme)?

$$
F_{g}=G \frac{m_{1} m_{2}}{r^{2}}
$$

[^0]: L. Casetti, M. Pettini, E.D.G. Cohen, Phys. Rep. 337, 237 (2000)

