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Summary

. Logistic map

. Celestial mechanics

. Meteorology

. Double pendulum

. Fractals

. Chaos in curved spaces

. The invariant set postulate

What will not be mentioned:

heteroclinic tangles
quantum chaos
cellular automata
Benford law

time series and 1/f
algorithmic complexity



Summary

Edward Lorenz (1960)

Chaos: When the present determines the future, but
the approximate present does not approximately
determine the future.

Robert May (1976)

Not only in research, but also in the everyday world of politics
and economics, we would all be better off if more people realised
that simple nonlinear systems do not necessarily possess simple
dynamical properties.



0. Logistic map

Xn+1 = TXp

population (at time n+1)

dying due to

. overpopulation

P.F. Verhulst, Recherches mathématiques sur la loi d'accroissement de la population,
Nouv. mém. de I' Academie Rovale des Sci. et Belles-Lettres de Bruxelles 18, 1 (1845)



. . T.Y. Li, J.A. Yorke, Period three implies chaos,
Log] St] C m a p Amer. Math. Monthly 82, 985, 1975

Xn+1 = rxn(l — xn)

_ bifurcation
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https://www.wolframalpha.com/input/?i=logistic+system



https://www.wolframalpha.com/input/?i=logistic+system

1. Celestial mechanics




Two-body system

(bodies attracted to each other by the gravitation force)

—>
graviton

i

(masses of the bodies are equal)

Simplification:
» the bodies are negligibly small
* the bodies have no internal structure




Two-body system

(bodies attracted to each other by the gravitation force)

(masses of the bodies are equal)
Simplification:

» the bodies are negligibly small
* the bodies have no internal structure

periodic elliptic motion (1609 - Johannes Kepler and his laws)
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M=M=5m

(Simplification: motion restricted to a plane)




M=M=5m

(Simplification: motion restricted to a plane)

periodic stable motion




Three-body system

- unstable motion

blue satellite slightly shifted
1 km
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Three-body system

- unstable motion




Poincaré’s Story: The planetary many-body problem

1887

At the occasion of the 60th birthday of Sweedish and Norwegian king
Oscar Il (to be celebrated in 1889), Sweedish mathematician Gosta
Mittag-Leffler announces a scientific competition with the aim of
finding a general solution of the many-body celestial system

Prize for the winner: gold medal and 2500 golden crowns

O

An unsolved problem for the competition:

Consider a system of arbitrarily many constituents that
attracts each other according to the Newton’s law of
gravitation. Assuming that the constituents never collitts
find coordinates of any of them in the form of a well-
behaved function of time.




Poincaré’s Story: The planetary many-body problem

Henri Poincaré
(1854-1912)

1887

At the occasion of the 60th birthday of Sweedish and Norwegian king
Oscar Il (to be celebrated in 1889), Sweedish mathematician Gosta
Mittag-Leffler announces a scientific competition with the aim of
finding a general solution of the many-body celestial system

Prize for the winner: gold medal and 2500 golden crowns

1888

Henri Poincaré applies his work called The three-body problem and
the equations of dynamics

)f
He establishes the first of the three 5
pillars of the modern physics:
* Chaos theory
* Quantum mechanics
» Theory of relativity hs)
Ness

in the solutions of ec]uations of mot'ion, introducing tvopology to
celestial mechanics, and cracking the lid of the Pandora’s box of chaos.




Three-body system

- unstable motion

distance between the blue satellites
(left simulation - right simulation) O = 5010“
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the bigger, the more unstable the system 7 times
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Deviation grows exponentially

(How many times can you fold a
piece of paper?)

Britney Gallivan *85
12 times




Lyapunov time T=1

- estimates for how long one can predict the future of a system

Examples
Hyperion (one of the Saturn’s moons):
- Rotation axis changes chaotically in time

- Consequence of the resonance with another Saturn’s moon
Titan C

Weather forecast: A couple of hours to days

Stadium billiard: Few seconds (a couple fo bounces) wir =

Pinball game:




Is the Solar system stable?



Lyapunov time:

= 50 to 500 million years §

J. Laskar a M. Gastineau (2009):

» Calculate very precisely the future of the solar system, starting from 2501 initial conditions
differing only in the Mars position (shifted by 0.38mm in each case)

« Obtain 20 collision solutions (i.e. about 1%) of various types:
*  Mercury hits Venus

* Mercury falls into the Sun
* Mercury deviates Mars onto a collision trajectory with the Earth

Wayne B. Hayes, Is the outer Solar System chaotic? Nature Physics 3, 689 (2007)
J. Laskar, M. Gastineau, Existence of collisional trajectories of Mercury, Mars and Venus with the Earth, Nature 459, 817 (2009)



KAM theorem
(Andrej Kolmogorov, Vladimir Arnol’d, Jurgen Moser, 1960)

Chaotic behaviour is caused by resonances - transfer of energy
between the components (degrees of freedom) of the system

Gaps in the Main asteroid belt - caused by resonances of the asteroids’
(D. Kirkwood 1874) orbits with Jupiter
330 I Mean Motion Resonance
(Asteroid: Jupiter) 3:1 5‘:'2 73 2‘:r1

300 | ! ' ' _
The smaller the integers, :
the stronger the resonance -

The weakest resonance:

o golden ratio 1+T‘/§ ~ 1.62
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KAM theorem
(Andrej Kolmogorov, Vladimir Arnol’d, Jurgen Moser, 1960)

Chaotic behaviour is caused by resonances - transfer of energy
between the components (degrees of freedom) of the system

Gaps in the Main asteroid belt Gaps in the rings of Saturn
(D. Kirkwood 1874)

"Trojans”

S R - consequence of resonaces with its moons

“Greeks"




Reduced three-body problem

« M > M, third body with negligible mass m = 0
» The motion of all the three bodies restricted to a plane
Solved in the system connected with M, M

= Poincaré section
Ly | + ,stroboscopic map“ - trajectory observed
‘ only at specific times (for example when y=0)

coordinate y

* In a system with just two degrees of
freedom, each point of the section belongs
to only one trajectory

. | ‘ 4 Stable (quasiperiodic) trajectories and
= unstable (chaotic) trajectories can be
R — distinguished with the naked eye.

" coordinate x
L, ..., Ly - Lagrange points (equilibrium; centrifugal force cancels out gravitational force)

N.B. This is what Poincaré considered in his essay.



Reduced three-body problem Earth - Moon

Poincaré section (x,v,) Trajectory (x,y)

[ velocity v,
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Hamiltonian systems

H:H(pla"'pf7QI7'“

. om . oH
Di = 00, qz—api

Conservative system:

Integrals of motion:

- connected to additional
symmetries of the system

Integrable system:

- Canonical transformation
to action-angle variables

~ ~

H=H(J,....J)

State of the system:
a point in the 2f dimensional
phase space

H(pla"'pf7Q1:"'an):E

(Trajectories restricted to 2f — 1 dimensional hyperspace)

Li=1(p1, .- proqiy-- -5 qr)
{I@"]j}Poisson =0

Number of degrees
of freedom f

Nonintegrability:
prerequisite for chaos Quasiperiodic
regular) motion

on a torus




2. Meteorology




Lorenz system

- simple model for atmospheric convection

Bénard cell

=0o(y —x)
y=x(t—z)—y
zZ=xy— [z
3 variables (not spatial coordinates!) 3 parameters
x:. convection intensity o: Prandtl number
y: temperature difference between 7: Rayleigh number
the ascending and descending current B: physical proportion

z: distortion of vertical temperature
profile from linearity

Lorenz’s choice o=10,T =28, = 3

Edward N. Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci. 20, 130 (1963)



Lorenz’s story

Lorenz was computing the “weather forecast” using his model.

The computer precision was 6 digits (x=14,7139 m/s), but the
terminal output was rounded to 3 digits (x=14,7 m/s).

intensity x
201

1R
] 1 ) ) Y

In the evening Lorenz wrote down a partial result. The following
day he resumed the calculation using rounded value (/=14,7 m/s).

After a few time steps he gets qualitatively different weather.

1963: One flap of the sea gull wings may affect the weather far away.
1972: Does the flap of a Butterfly’s wings in Brasil set off a tornado in Texas?




Lorenz’s story

The Butterfly Effect

metaphor for the physical chaos

,» The butterfly, with its seeming frailty and lack of
power, is a natural choice for a symbol of the small
that can produce the great.

- sensitivity to initial conditions
- sensitivity to tiny perturbations

In the evening Lorenz wro|
day he resumed the calcu

After a few time steps he

1963: One flap of the sea gull wings may affect the

1972: Does the flap of a Butterfly’s wings in Brasil

Solution in the form of the
strange attractor
(fractal dimension d=2,04)

(it resembles the wings of a butterfly)




3. Double pendulum




When you see it, you must have it.




graviton



graviton

NS

When the construction has been successfut.

' 3 : 2 & S,
e by - N



Double pendulum Hamiltonian

My
H= A 3 fundamental parameters
[ - in the following considered only the case
[ = E m = [ = 1 (equal masses and lengths)
, and y = 0 (no gravity) ory =1
v = gMily
M, Angular momenta
(associated with the angles ¢)
1 1 [ + cos g 1+ 11+ 20l cos g + ul?
T2 M— L ) P L A £ L
21+ psin® g [ il

V=~[(14+p)(1—coser)+ pul (1 —-cos(p; + ¢2))]

Integrable for y = 0 (no gravity)
L, is then the additional integral of motion

L. Perotti, Phys. Rev. E 34, 066218 (2004)



Poincare sections

We plot a point each
time M, crosses the
marked yellow line

Section at
0 = 0 -10

ordered case - “circles”

chaotic case
— “fog” of
points

Various initial conditions at energy E = 12




Fraction of regularity

Measure of classical chaos

Surface of the section
covered with regular
trajectories

Y
breg

]L reg — -
; kgt(:)t

Total kinematically
accessible surface of -10
the section

/
1
|| :
\I-‘:
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Fraction of regularity

Measure of classical chaos
10+

Surface of the section L.
covered with regular 1
trajectories

= 04
breg ]

]L reg — -
; kgt(:)t

Total kinematically
accessible surface of -10 -
the section

y=1

12

REGULAR area
CHAOTIC area




frec depends on energy!

. 11~ Small amplitude
freg vibrations
081

(a)




Quasiperiodic X unstable trajectories

1. Lyapunov exponent

} A = max lim l111 0l

5(0) t—oc t |5(0)]

500 ] X )
> D7 51"~ 50)
Regular: at most Chaotic: exponential v

polynomial divergence

divergence

o(t) ~ €
Divergence of two neighboring trajectories

2. SALI (Smaller Alignment Index)

(51(?) (SQ(IL) (51 lL (52 lL
|(51 lL (52 lL |

. + — ,
01(E)] (02|
« fast convergence towards zero for chaotic trajectories

SALI(t) = min {

« two divergencies

Ch. Skokos, J. Phys. A: Math. Gen 34, 10029 (2001); 37 (2004), 6269



Fractals
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Fractal structure

- selfsimilarity- a part looks like the whole
- property of many natural object

-
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Fractal structure

Length of the sea coastline

Kalaallits
[NUnaat




Fractal (fractional) dimension

Length of the sea coastline (Great Britain)

1950 - Lewis F. Richardson studies the correlation betwee
tendency of countries to declare a war and the length of t
common border

He finds out that the border lengths taken from different
sources vary extremely. Today’s values for the GB:

Ordance Survey: 17 820 km
Coastal Guide Europe: 18 838 km
CIA World Factbook: 12 429 km (includes Northern Ireland)

Measure length (: 200 km 100 km 50 km
Number of mesurements N: 12 28 68
Length of the coastline: 2400 km 2800 km 3400 km
log N 1
27 N p— ]_d

1
L log N :@log 7

line slope: fractal dimension d = 1,25

Y 22 2 18 -1.6
log (1/1)

Benoit Mandelbrot, How long is the coast of Britain? Statistical self-similarity and fractional dimension,
Science 156, 636 (1967)



Fractal (fractional) dimension

Length of the sea coastline (Great Britain) ,
1950 - Lewis F. Richardson studies the correlation betwee \
Abstract. Geographical curves are so involved in their detail that their lengths
are often infinite or, rather, undefinable. However, many are statistically “self-
similar,” meaning that each portion can be considered a reduced-scale image of

the whole, In that case, the degree of complication can be described by a quantity
D that has many properties of a “dimension,” though it is fractional; that is, it

exceeds the value unity associated with the ordinary, rectifiable, curves. M
Us
-I:'\T:R&N COAST
4.0 _ '
CIRCLE \
SOUTH AFRICAN COAST
GERM o -

3.5 AN 1.4

&)
VEST Cone, —% 1,15
\ OF BRI
TAIN
\

3.0 \
LAND.

_ CF'RONTIER OF PORTUGAL ! 1 ’ 25

1.0 1.5 2.0 2.5 3.0 3.5
Logw (Length of Side in Kilometers)

Logw (Total Length in Kilometers)

g
g
I

14 } } t |
-2.4 -2.2 -2 -1.8 -1.6

log (1/1)

Benoit Mandelbrot, How long is the coast of Britain? Statistical self-similarity and fractional dimension,
Science 156, 636 (1967)



Fractal dimension - examples
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Artificial fractals

Koch curve:
(Helge von Koch, 1904)

- fractal dimension
log 4
d=-22" 19

log 3
Sierpinsky triangle:
(Wactaw Sierpinsky, 1915)

_log3
~ log?2 N

d

. and more and more

-fractal dimension
(depends on the type)




Mandelbrot set

A set of all complex numbers c,
for which the series

2
Zn+l = R, T C

is bounded

YouTube animation: https://www.youtube.com/watch?v=PD2XgQOyCCk



https://www.youtube.com/watch?v=PD2XgQOyCCk
https://www.youtube.com/watch?v=PD2XgQOyCCk

Mandelbrot set

1978 - defined by Robert W. Brooks
and Peter Matelski, giving the first
sketch of its shape

fractal dimension of the border d=2

- %te

1642, "
‘éj"z - 1975 introduces the notion fractal? l%“%r:@w
1 \ - 1980 uses the computer to draw the

} Mandelbrot set for the first time




Mandelbrot set

1978 - defined by Robert W. Brooks
and Peter Matelski, giving the first
sketch of its shape

fractal dimension of the border d=2

1980 uses the computer to draw the
Mandelbrot set for the first time




Application of the fractals - computer graphics

- generating of structures with given fractal dimension

- computer games, movies (Star Trek Il: The Wrath of Khan - 1982)

T




4. Chaos in curved spaces
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Geometrical embedding

Hamiltonian of a free particle
in a curved space:

Hamiltonian in the flat Eucleidian
space with a potential:

= ijp +V(z) > H = 2}\49”( )p'p’

A suitable metric g;;

AN y
/ L s il /\curvature )
' l» I’
H : !

. S
Geodesic
- Trajectory
Potential =
Bridge:
« The equations of motion (Hamilton, Newton) correspond with the geodesic equation
Why embedding:

« Riemannian geometry brings in the notion of curvature that could help clarify
the sources of instability, and in the same time quantify the amount of chaos in

non-ergodic systems

L. Casetti, M. Pettini, E.D.G. Cohen, Phys. Rep. 337, 237 (2000)



Generalization of a straight line

GeOd eS]CS & Ma 2 Describe a ”free motion” in a curved space
“Shortest path” between two points

In reality, other effects are taken into o
account - winds, jet stream, air traffic o &8

F R

S N
(

Visualisation of a curved space - mapping onto the flat space




Flat space

(dynamics)
Potential energy V
Time t
Forces oV

Curvature of the potential 9V, (9V)?

Trajectories
Hamiltonian equations of motion

dz! _ OH  dp; OH

Tangent dynamics equation

25 [V N
j p—
T (axz‘axa‘) =0

Curved space

(geometry)

Metric gdij
Arc-length S

Christoffel’s symbols ik
Riemannian tensor

Ricci tensor '
Scalar curvature

) . 7 _ gl
e L = Ry, R = g7 Ry

Geodesics
Geodesic equation

d2at da? dz*

T o o oo €@ =0

Equation of the geodesic
deviation (Jacobi equation)

D25i+ - dad | dat -
ds? *ds 7 ds

T'(t) = 2 (t) + 6" (1)

o1
Lyapunov exponent A= lél(%;c thji z In HOI




Examples of embedding

1. Jacobi metric
gij = 2[E — V()| by
- conformal
- length element ds* =4[E — V(x)] dt*
N (VV)? AV
- nonzero scalar curvature RV=2) = (zaporna pouze pro AV < 0)

E—Vy (E-V)

2. Eisenhart metric

- manifold dimension extended by two
M x R? (5(;0 = t,:cl,...,:r;N,a:NH)
- length element = time element (ds® = §,;d2'd2? — 2V (x)d2’d2® + 2da da™ T =(d¢?

oV
ox’

- only one nonvanishing Christoffel symbol T, =

- vanishing scalar curvature R=0

L. Casetti, M. Pettini, E.D.G. Cohen, Phys. Rep. 337, 237 (2000)
M. Pettini, Geometry and Topology in Hamiltonian Dynamics and Statistical Mechanics (Springer New York, 2007)



Curvature and instability

- R =const Equation of the d*¢’ 1R _
(izotropni varieta) geodetic deviation: d g2 + 5 5 B
Equation of motlf)n . \ Y stable R >0
* harmonic oscillator with frequency w =+ R/2 | /7 ) o
N )
« exponential growth with Lyapunov exponent \ "“ unSt)ble R=0
l=+/—R/2
« R<O Unstable motion with estimated Lyapunov exponent [ > \/— max R/2
. (125 s ,
e dimf=2 T2 2 ( )f =0 R(s) = Ry + Z la,, cos(nws) + by, sin(nws)]
as n=1

Equation of motion of a harmonic oscillator with its length (stiffness) modulated in time
Unstable if the frequencywo, = v/ Ry/2 in resonance with any of the frequency of the
Fourier expansion, even if R(s) > 0 on the whole manifold:

Parametric instability - R is not sufficient to determine chaotic motion




Curvature and instability

Besides solving the equation for the geodesic deviation, can one deduce
something about the instability only from the curvature?

q” —E )
. . ;= — i
3. Israeli metric TOE=V(e)|

Using the Israeli metric and connection form, the equation of the geodesic deviation
is expressed as

D26 i,,9 . . . .
= _YVPé il g _ v'v? - projector into a direction

dt? w2 orthogonal to the velocity

3 oV oV N 1 A%
M?2v? 0zt Oxd M Oxtoxd

Stability matrix

Vij =

Conjecture: A negative eigenvalue of the Stability matrix )V inside
the kinematically accessible area induces instability of the motion.

Example of unstable configuration

Kinematically accessible area
-------- Negative lower eigenvalue of V
-------- Negative higher eigenvalue of V

L. Horwitz et al., Phys. Rev. Lett. 98, 234301 (2007)



Properties of the stability matrix

1 3 L. A9

1. When | K (x)| is big enough, S becomes the Hessian matrix for the tangent dynamics
2. Eigenvalues can only decrease within the kinematically accessible domain

h The size of the negative eigenvalue region can only
grow with energy, or remain the same

f=2

3. The lower eigenvalue )\ _ is continuous on the boundary of the accessible domain

4. The lower eigenvalue )\_ is zero on the boundary when RV RV v
(O V)2 2V + (9,V)2 02,V —2(8,V) (8,V) 2V =0 a ( RV RV 0V ) =0
, .V 9V 0
A >0

Ao <0
7, convex

condition for inflexion points
of the curve V(z,y) =0

/ Qf concave potential
7 surface - dispersing
The curvature-based criterion for the
onset of chaos can be partly convex potential
- ‘/ surface - focusing

translated into the language of the
shape of the equipotential contours.




Instability threshold

Scenario A - Penetration
E=-0.4

V=A@*+y") +Ba(*=3y*) +C («* + y2)2
A~ —0.588 B=~0.809 C=1

- region of negative A_, which exists
outside the accessible region, starts
overlapping with it at some energy E

- equipotential contours undergoes the
convex-concave transition




Instability threshold

Scenario A - Penetration
E=-0.4

V=A@*+y") +Ba(*=3y*) +C («* + y2)2
A~ —0.588 B=~0.809 C=1

- region of negative A_, which exists
outside the accessible region, starts
overlapping with it at some energy E

- equipotential contours undergoes the
convex-concave transition




Instability threshold

Scenario A - Penetration
E=0.5

V=A@*+y") +Ba(*=3y*) +C («* + y2)2
A~ —0.588 B=~0.809 C=1

- region of negative A_, which exists
outside the accessible region, starts
overlapping with it at some energy E

- equipotential contours undergoes the
convex-concave transition

Scenario B - Creation
E=-33

V =5p+p* +4p° + pt
p=1r—"19 To9~ 2973
- region of negative A_ eventually
appears somewhere inside the
accessible region at some energy E
- all the equipotential contours convex
- necessary condition 97,V +9;,V <0




Zaver

Edward Lorenz (1960): Pritomnost jasné udava budoucnost,
ale priblizna pritomnost neudava budoucnost ani priblizne.

Klasicka fyzika je deterministicka, ale jelikoz je nemozné mit k dispozici absolutné
presné polohy a hybnosti vSech téles a absolutné presnou vypocetni silu, budoucnost
nelze predpovédét. Predpovéditelnost je omezena Ljapunovovym casem.

Deterministicky chaos

Na co se nedostalo:

» heteroklinicka zmét

« chaos v kvantové fyzice
« komplexni systémy

« celularni automaty

« Benforddv zakon

« Casové rady a 1/f Sum

+ algoritmicka komplexita

DIKY ZA POZORNOST







Fyzika 1. druhu - kédovani

Pozorovanim svéta a provadénim experimentu ziskavame
jednoducha pravidla, kterymi se svét ridi

- (prirodni) zakony

- rovnice

Newton (1680)

Fyzika 2. druhu - dekoédovani

Zabyvame se detailné dusledky pravidel a zakont
- Co se stane, kdyz zakony upravime nebo pozménime?
- Jaka jsou vsechna mozna reSeni rovnic

(tedy i ta, ktera bezprostredné nepozorujeme)?

F, = Gm?{gm ) /77




