Simulation of particle physics processes using Geant4 toolkit Bachelor thesis

Radek Přívara

Department of Experimental Physics Palacký University Olomouc

April 6, 2018

Geant4

- Toolkit for simulation of passage of particles through matter.
- Used in high-energy, nuclear and accelerator physics.
- Provides tools for all aspects of simulation: geometry, tracking, detector response, visualization and more.

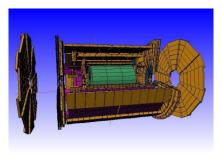


Figure: ATLAS detector.

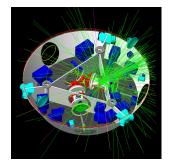


Figure: Nuclear reaction in LISA Pathfinder sensor.

Radek Přívara (UPOL)

Simulations using Geant4 toolkit

April 6, 2018 2 / 17

Range of alpha particles in air - Phenomenology

• Kinetic energy T of an alpha particle after traversing air of thickness x is given by an empirical formula

$$T(x) = \left(T_0^a - \frac{x}{\xi}\right)^{\frac{1}{a}},$$

where a = 1.5 mm and $\xi = 3.1 \text{ mm} \cdot \text{MeV}^{-3/2}$ (experimentally established).

• **Goal:** Simulate the passage of alpha particles through air and establish values of *a* and ξ .

Range of alpha particles in air - Simulation

- Alpha particle source (8 MeV) placed inside an air block, particle emission along the block axis.
- Moving the particle source inside the air block \rightarrow changing the effective air thickness.
- Tracking of each particle information about energy and distance travelled in air obtained.

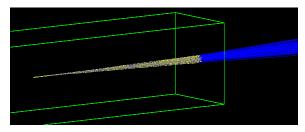
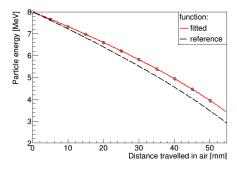



Figure: Alpha particles passing through the air block (green). Visible interaction points (yellow) and particle trajectories (blue).

Range of alpha particles in air - Data analysis

- Analysis using ROOT.
- Particle energy as a function of distance travelled in air plotted. These data points were fitted with a function:

$$f(x) = \left(A^B - \frac{x}{C}\right)^{\frac{1}{B}}$$

• Values of a and ξ obtained from the fitted function's parameters.

	reference	obtained	difference
<i>a</i> [mm]	1,5	$1{,}7\pm0{,}1$	$2\sigma_a$
$\xi [mm\cdotMeV^{-3/2}]$	3,1	$2,1\pm0,6$	$1,67\sigma_{\xi}$

• Obtained and reference values of the parameters in reasonable agreement.

Energy loss in silicon - Intro

- Particle camera MX-10 previously used for detection of μ and π from testbeams at CERN (AFP ToF detector).
 - Timepix sensor chip 256 \times 256 pixels, 2 cm² active area.
- **Goal:** Simulate the passage of μ and π through a model of the sensor chip. Establish energy loss rates of these particles from experiment and simulation data.

Figure: MX-10 Particle Camera

Energy loss in silicon - Experiment

- Passage of 120 GeV μ and π recorded using MX-10 particle camera.
- Information about deposited energy in every pixel obtained.
- Output text files processed using ROOT.

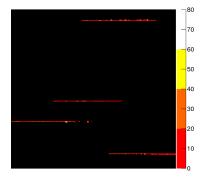


Figure: Testbeam μ passing through the sensor chip. Deposited energy in keV.

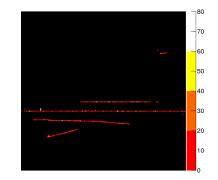


Figure: Testbeam π passing through the sensor chip. Deposited energy in keV.

Radek Přívara (UPOL)

April 6, 2018 8 / 17

Energy loss in silicon - Simulation

- A simple model of the silicon sensor chip created.
- Particles emitted from a surface source to ensure parallel trajectories.
- 100 simulation runs, 15 particles emitted in each run 1500 trajectories.

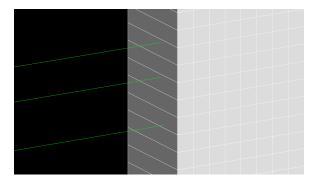


Figure: A model of the sensor chip. Green lines represent particle trajectories.

• Structure of output files identical to camera's output – processing with one program.

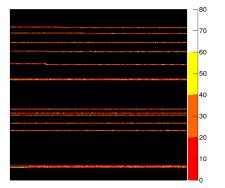


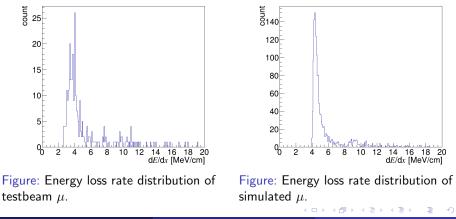
Figure: Simulated passage of μ through the model of the sensor chip.

Figure: Simulated passage of π through the model of the sensor chip.

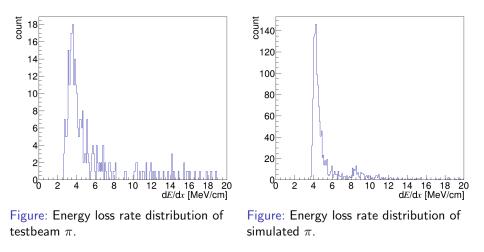
180

60

50


40

30


20

Energy loss in silicon - Data analysis

- Experimental (\sim 300 values) and simulation (\sim 1500 values) data sets analysed using the same program.
- Energy loss rate of every analysed trajectory calculated \Rightarrow Energy loss rate distributions obtained.

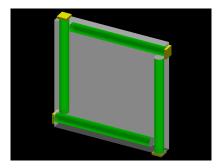
Energy loss in silicon - Data analysis

Energy loss in silicon - Results

• Mean energy loss rates obtained from the experiment and from the simulation are in agreement.

$-\left\langle \frac{\mathrm{d}E}{\mathrm{d}x}\right\rangle$	reference	experiment	simulation
μ	5,59	$5,2\pm0,2$	$5{,}49 \pm 0{,}06$
π	5,58	$5{,}3\pm0{,}2$	$5{,}38 \pm 0{,}07$

Table: Mean energy loss rates in MeV/cm. Reference values calculated using Bethe-Bloch equation.


• Most probable energy loss rates from the experiment and from the simulation differ significantly.

$-\left(\frac{\mathrm{d}E}{\mathrm{d}x}\right)_{\mathrm{prob}}$	experiment	simulation
μ	$3{,}67 \pm 0{,}05$	$4{,}51\pm0{,}02$
π	$3{,}66 \pm 0{,}06$	$4{,}33\pm0{,}02$

Table: Most probable energy loss rates in MeV/cm.

Geometry optimization

- Work in progress.
- 4 wave-length shifting (WLS) fibres placed inside a scintillator block. Every fibre has a respective detector.
- **Goal:** Find the optimal geometry parameters (block thickness and fibre diameter) to get the best time resolution.

Geometry optimization - Simulation

- Simulation of particle passage through the scintillator for 14 fibre diameters and 10 block thicknesses \Rightarrow 140 geometry configurations.
- 5000 particles emitted for each geometry configuration.
- Detectors tracked time of arrival of scintillation photons.

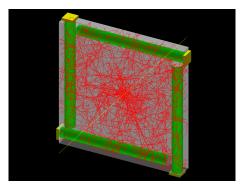


Figure: Scintillation photons (red) emitted as a result of a passing particle (yellow trajectory).

Geometry optimization - Data analysis

- Hits from 4 detectors and combined into a "pulse" for every geometry configuration.
- Analysis of the pulse (FWHM) \Rightarrow information about time resolution.

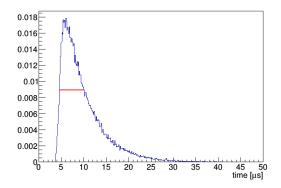


Figure: Detector response pulse. Red line signifies FWHM of the pulse.

Radek Přívara (UPOL)

Geometry optimization - Data analysis

• Pulse FWHM for every geometry configuration plotted as a 2D graph.

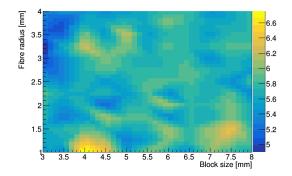


Figure: A graph of FWHMs (in μ s) for every geometry configuration.

• Geometry configuration doesn't seem to significantly influence time resolution.

Radek Přívara (UPOL)