Recap of BLM threshold changes in 2017 and changes planned in the YETS2017/18

A. Lechner, E.B. Holzer, T. Medvedeva, S. Le Naour, A. Mereghetti, D. Wollmann,
C. Zamantzas with previous contributions from C. Xu, M. Kalliokoski

65th BLM Thresholds WG Meeting Feb $27^{\rm th},\,2018$

Summary of BLM threshold changes in 2017

BLM threshold changes planned in YETS 2017/18

A. Lechner (BLMTWG65)

Feb 27th, 2018 2 / 17

< < >> < <</p>

Changes in EYETS 2016/17 (1/2)

• Sector 12 (315 BLMs, 14 families)

- o 2016: BLMs in S12 reduced by a factor of 10/3.333 in Aug. 2016 (UFO/orbit bump)
- EYETS 2016/17: reverted Sector 12 (BLMs at Q10s stayed w/o UFO corr, MF=0.15)

• IPQ P3 Monitors from Q4 to Q6 in all IRs except IR3/7 (63 BLMs, 3 families)

- o 2016: master tables at electronic maximum (but MF≠1)
- EYETS 2016/17: applied same master thresholds as for P1&P2 monitors, but 20 times higher; in addition unified MFs to 0.333

ALICE BLMs (3 BLMs, 1 family)

- o 2016: not in BIS
- EYETS 2016/17: added to BIS, created new thresholds based on TDI shots in 2015 and msec TDI losses in Fill 5074 in 2016

< □ > < □ > < □ > < □ > < □ > < □ >

Changes in EYETS 2016/17 (2/2)

- New AFP Roman Pots in cell 6L1, B2 (2 BLMs, 1 family)
 - 2 new BLMs installed next to the two new pots
 - EYETS 2016/17: assigned BLMs to existing AFP family (cell 6R1)
- New low-impedance collimator (coated MoGR) in cell 4R7, B2
 - $\circ~$ Existing BLM renamed to reflect new slot allocation (TCSM \rightarrow TCSPM)
 - EYETS 2016/17: added to BIS, thresholds at electronic maximum
- New crystal collimators in cells 4R7 and 6R7, B2
 - 2 new BLMs installed next to the new goniometers
 - Not added to BIS (note: B1 crystals in 4L7/6L7 do not even have dedicated BLMs)
- Warm dipole BLMs in IR1 (B1&B2)
 - 2 BLMs had been installed in TS2 2016 for diagnostic reasons (not in BIS)
 - Have been removed in EYETS 2016/17

イロト イポト イヨト イヨト

Checks and changes in TS1 2017 (1/3)

As usual, in TS1 pp debris-related FT corrections were re-evaluated

 Remember our general policy: debris-induced signals should remain below 30% of the thresholds (i.e. below the warning level)

FT corrections (pp debris) IR1/5 triplet

- Last adjustment had been in YETS 2015/16 (LHC-BLM-ECR-0044)
- Found no big change in triplet BLM signals per pp collision in 2017
- Extrapolation showed that no BLM would be in warning up to 2.0×10³⁴ cm⁻²s⁻¹ and only one BLM would be in warning at 2.2×10³⁴ cm⁻²s⁻¹
- TS1 2017: did not perform any adjustment, said we would redo analysis once we reach $2 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$ (but then there was $16L2 \rightarrow \text{levelled at } 1.5 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$)

FT corrections (pp debris) IR8 triplet

- One family (THRI.IP28.P3_MQXB_FT) had a FT correction in energy level 26 and 27 (the latter one being active at 6.5 TeV)
- TS1 2017: reverted e-level 26 of this family to pre-2016 settings, otherwise no adjustments necessary at IR8 triplet (no warnings up to 5×10³² cm⁻²s⁻¹, also for other spectrometer polarity)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Checks and changes in TS1 2017 (2/3)

• FT corrections (pp debris) TCLs IR1/5

- $\circ~$ TCL.4R5 would have been in warning for lumi $> 1.58 \times 10^{34} cm^{-2} s^{-1}$
- TS1 2017: increased FT correction by 30% to allow for 2×10³⁴ cm⁻²s⁻¹ like for triplets

- FT corrections (pp debris) TCTs IR1/5
 - $\circ~$ Was predicted to reach warning for lumi $> 1.75 \times 10^{34} cm^{-2} s^{-1}$
 - TS1 2017: no adjustment done, but planned to re-evaluate thresholds once we reach $1.7 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$ (but then there was 16L2)
- FT corrections (pp debris) TCTs IR8
 - TCTPV.4R8 reached warning levels in long RS (>8) in the week before MD1/TS1 2017 (for instantaneous lumi > 4.4×10³² cm⁻²s⁻¹)
 - TS1 2017: increased FT correction by 14% to allow for 5×10³² cm⁻² s⁻¹

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Checks and changes in TS1 2017 (3/3)

- Q6.R7 (collimation losses):
 - Warnings during ramp just before threshold energy level 27 is reached (FT correction not yet active)
 - TS1 2017: did not perform any changes but suggested to keep an eye on it, had 1-2 dumps later in the year

- IR7 collimators (transient losses related to 16L2):
 - One week before TS1 2017: MFs at IR7 TCPs, TCSGs, and TCLAs were increased from 0.4 to 0.8 (would correspond to a power loss of 400 kW for 1-10 sec and to 80 kW in steady-state conditions, however did not increase MFs at magntes)
 - Beneficial for data collection, but did not prevent 16L2 dumps

BLM threshold changes in 16/17L2 after quench (Aug 2017)

Yellow = mobile BLMs (not in BIS)

→ A quench of MB.C16L2 occurred in Aug 2017 (not unexpected, see LMC 19 July 2017) → Changed Master Tables and MFs on Monday 14/08/2017:

MB BLMs:

BLMBI:

- → UFO correction removed
- → MF reduced from 0.333 to 0.1

MQ BLMs (changed for redundancy):

BLMQI (upstream):

- → UFO correction removed
- → MF reduced from 0.333 to 0.1

BLMQI (downstream):

→ MF reduced from 0.333 to 0.1 (had no UFO correction)

BLM threshold changes for 2.51 TeV run (Nov 2017)

Collimation losses:

- Introduced FT corrections at the energy level active at 2.51 TeV in order to allow for 200 kW/40 kW losses (1-10 s / steady state):
 - \Rightarrow Q4/Q5 in IR6 (P1 monitor)
 - \Rightarrow Q6 in IR7 (P1 and P2 monitors)
 - \Rightarrow MQWs in IR7
- NB: all monitors had FT corrections at 6.5 TeV, i.e. only "_FT" families were concerned

Luminosity losses:

- No changes needed in IR1/5 (triplet, TCLs, TCTs)
- Two IR8 triplet BLMs (MQXA, P3) found in warning
 - \rightarrow MFs were increased (and reverted after the run)

< < >> < <</p>

Summary of 2017 threshold changes and ECRs

Reason	Families	# BLMs	ECR
EYETS 2016/17:			
Reverted Sector 12	14 families	309 BLMs	LHC-BLM-ECR-0057
More physical shape for Q4-Q6 P3 BLM families (except IR3/7), MF unification	THRI.LS.P3_MQM, THRI.LS.P3_MQM_RC, THRI.LS.P3_MQY	63 BLMs	LHC-BLM-ECR-0057
Created ALICE BLM thresholds based on TDI losses	THRI_ALICE (new)	3 BLMs	LHC-BLM-ECR-0058
Assigned BLMs at new AFP pots in 6L1 to existing AFP family	THRI.IR1_XRP_FT	2 BLMs	LHC-BLM-ECR-0059
BLM at low-impedance collimator added to BIS with thresholds at electronic max. TS1 2017:	THRI_TCSM	1 BLM	LHC-BLM-ECR-0060
Increased FT correction at TCT.4R8 by 14% to mitigate pp debris-induced warnings	THRI_TCTVB_OI_RC8	1 BLM	LHC-BLM-ECR-0061
Increased FT correction at TCLs (Cu) by 30% to avoid pp debris-induced warnings at TCL.4R5	THRI_TCL	8 BLMs	LHC-BLM-ECR-0061
Removed FT correction from energy level 26 of IR2/8 MQXB (P3) family which re- mained there by mistake	THRI.IP28.P3_MQXB_FT	8 BLMs	LHC-BLM-ECR-0061

• □ ▶ • □ ▶ • □ ▶ •

Summary of 2017 threshold changes and ECRs (cont.)

Reason	Families	# BLMs	ECR
TS1 2017 (continued):			
Increased MF of following families from 0.4	THRI_7_TCP,		LHC-BLM-ECR-0061
to 0.8 to allow for a better data collection	THRI_7_TCSG,		
for 16L2-related events	THRI_7_TCSG_F5,		
	THRI.06_7_AB_TCLA,		
	THRI.06_7_CD_TCLA,		
	THRI.07_7_AB_TCLA		
Aug 2017, after quench in 16L2:			
Removed UFO corrections and reduced	THRI.ARDS_MBMB(_CRIT),	6 BLMs	LHC-BLM-ECR-0062
MFs in 16L2/17L2	THRI.ARDS.P1_MQ(_CRIT),		(ECR title to be re-
	THRI.ARDS.P3_MQ		named)
Nov 2017 (2.51 TeV run):			
Implemented FT corrections for collimation	THRI.LS.P1_MQY_FT,	40 BLMs	LHC-BLM-ECR-0063
leakage at 2.5 TeV	THRI.IP7.P1_MQTL_FT,		
	THRI.IP7.P2_MQTL_FT,		
	THRI.IP7_MQW_FT		
Adjusted MFs at IR8 triplet magnets to	THRI.IP28.P3_MQXA_FT	2 BLMs	LHC-BLM-ECR-0063
avoid debris-induced warnings			

Changed the thresholds of roughly five times less BLMs than in 2016.

Summary of BLM threshold changes in 2017

BLM threshold changes planned in YETS 2017/18

A. Lechner (BLMTWG65)

Feb 27th, 2018 12 / 17

• Wire collimator installations:

- Installed in EYETS 2016/17: TCTPH.4R5.B2 and TCL.4L5.B2 (LHC-TC-EC-0007) Note: previous TCL.4L5.B2 was made of Cu, while the wire collimator is made of Inermet (W-alloy)
- New in YETS 2017/18: TCTPV.4R1.B2 (existing slot), TCLVW.5L1.B2 (new slot with new BLM) (LHC-TC-EC-0009)

• Reminder of TCL thresholds:

- Had one family in 2015 (THRI_TCL) but with different MFs to reflect the different TCL materials (Cu in cells 4/5 → MF=1.0, W in cell 6 → MF=0.1-0.2)
- YETS 2015/16: split family into two, THRLTCL and THRLTCL_W, the latter including a scale correction, but the applied thresholds were the same as in 2015
- In 2016-2017, the FT correction of the two families evolved independently, now being a factor of 6.5 higher for the THRI_TCL family (applied thresholds)

• Threshold proposal:

 Proposal YETS 2017/18: assign the TCL.4L5.B2 BLM and the new BLM at TCLVW.5L1.B2 to THRI_TCL_W; will need some adjustment of FT corrections once the lumi is ramped up (for TCL.4L5.B2 expect to reach warning in RS12 at a lumi of 1.40×10³⁴cm⁻²s⁻¹)

イロト イポト イヨト イヨト

Heat load investigations in 31L2 (Heat Load Task Force)

- Solenoid around QBBI.A31L2 + mobile BLM installation in 31L2:
 - o Idea is to investigate a possible correlation between heat load and e-cloud
 - o Mobile BLMs and BLM bundles requested to monitor losses (from beam-gas collisions)

Standard MB-MB BLM

- The standard BLM on top of QBBI.A31L2 interconnect will be lifted by 15 cm (new support) and will be located above the solenoid \rightarrow will decrease BLM response per proton lost
- Reminder: in short running sums (up to RS06) the thresholds are a factor of 3 above quench level, in long running sums they are at quench level → decreased response means that thresholds are above quench level in long running sums
- Proposal YETS 2017/18: keep thresholds as they are (and adjust them on the fly in the very unlikely case of a quench)

• Local threshold modifications in 16L2/17L2:

- Proposal YETS 2017/18: keep the thresholds for the moment, but to revert them in TS1 if no abnormal losses are observed
- o NB: the mobile BLMs in 16L2 remain in place

• Monitor factors of IR7 collimators (16L2-related increase):

- Remember: MFs were only increased at IR7 collimators and not at magnets/non-IR7 collimators
- Proposal YETS 2017/18: keep the MFs for the moment until the usual reassessment of FT corrections (~TS1), then harmonize between IR7 collimators and other elements to allow for a certain power loss

Reversal of FT corrections at 2.5 TeV energy level

- More general question: shall so-called FT corrections be extented to all energy levels?
 - Evidently they wouldn't be FT corrections anymore, but we could call them "steady-state loss (SSL) corrections"
 - FT corrections are motivated by two kinds of losses: luminosity debris and collimation losses
 - FT corrections are empirically corrected once or twice every year to adjust to operational changes (higher luminosity, different collimator settings)

• Luminosity debris:

- o Luminosity losses occur only at top energy
- Occasionally, reference runs are carried out at different energies (e.g. 1.5 TeV in 2015, 2.51 TeV in 2017), however only little or no adjustment is usually needed
- Introducing luminosity-related SSL corrections does not have any advantages (we cannot anticipate the luminosity and TCL/TCT settings at future reference runs, hence adjustments will anyway be necessary)

• Collimation losses:

- o From a logical point of view, SSL corrections can make sense
 - \Rightarrow they would have avoided a few (1-2?) dumps in 2017 (Q6 in IR7)
 - $\Rightarrow~$ they might have also saved work for the 2.5 TeV run
- However in general SSL corrections would require a much extented re-evaluation every year based on loss maps at different energy levels (interpolated)
- Could be incorporated as a new collimation threshold strategy in LS2 (when collimator thresholds will be re-evaluated)?

Adjustment of old (Run 1) threshold model for DS BLMs on dipoles (horizontal plane)

- o First loss analysis by Tatiana last year
- See next presentation

• TCT threshold verification:

- o Tracking and shower studies completed
- o EN/MME is progressing on thermo-mechanical simulations
- o Report in Coll WG planned for April 2018

Injection losses:

- o Blindable BLMs foreseen to be tested again in commissioning
- Need to follow closely if we have a bottleneck in DS (removed some filters of MB-MB BLMs last year)

• Up to TS1:

o As usual, need to reassess all FT corrections (collimation, debris)

イロト イポト イヨト イヨト