v_{μ} disappearance

Budimir Kliček OPERA Collaboration meeting Anacapri, 31 May 2018

1

The result

2

Monte Carlo

Monte Carlo

- A new full simulation of neutrino interactions in OPERA and surrounding material was created
- Separate beamfiles for three categories of materials
 - Lead
 - Iron
 - ISO
 - all other materials
 - C12 target was used to produce ISO beamfiles

Beamfiles

- A set of beamfiles was produced using Genie 2.8.6
- All CNGS prompt flux components
 - NC interactions included here
- + ν_{μ} appearance fluxe
 - $\nu_{\mu} \rightarrow \nu_{\tau}$ and $\nu_{\mu} \rightarrow \nu_{e}$
 - all other appearance fluxes proved to be negligible
- 6 flux components in total, 3 materials 18 different beamfiles

Flux	ν flavour –	Nur	nber of eve	Oggillation channel	
		LEAD	IRON	ISO	Oscillation channel
	$ u_{\mu}$	10^{6}	10^{6}	$3 \cdot 10^6$	$ u_{\mu} ightarrow u_{\mu}$
$ u_{\mu}$	$ u_e$	10^{6}	10^{6}	10^{6}	$ u_{\mu} ightarrow u_{e}$
	$ u_{ au}$	10^{6}	10^{6}	10^{6}	$ u_{\mu} ightarrow u_{ au}$
$\overline{ u}_{\mu}$	$\overline{ u}_{\mu}$	10^{6}	10^{6}	10^{6}	$\overline{ u}_{\mu} ightarrow \overline{ u}_{\mu}$
ν_e	$ u_e$	10^{6}	10^{6}	10^{6}	$ u_e \rightarrow \nu_e $
$\overline{ u}_e$	$\overline{ u}_e$	10^{6}	10^{6}	10^{6}	$\overline{ u}_e ightarrow \overline{ u}_e$

OPERA geometry sub-volumes

- Seven sub-volumes were defined, according to materials and expected number of triggered events
 - opdy_lead all lead in OPERA detector
 - opdy_iron all iron in OPERA detector
 - opdy_iso volume containing all other materials in OPERA
 - borexino Borexino and its infrastructure
 - front_rock rock in front
 - below_hallc rock below
 - side_and_above_hallc shield and rock around Hall C, except the one below
- A single MC run is defined by a sub-volume and flux component

Interaction vertex selection

- Neutrino interaction vertices were chosen according to the interaction probability
 - extension to OpSim
 - trivial for subvolumes containing only one material, not trivial for others

Event weights

- Events are re-weighted such that the total sum of all event weights equals the number of expected CNGS neutrino interactions for 1.82e20 p.o.t
- unoscillated weight weight of appearance events before oscillation probability is applied

Trigger

- Trigger components:
 - TT_trigger two consecutive TT planes with more than 1 pe in either horizontal or vetical direction or a single plane with more than 500 ADC
 - RPC_trigger at least 3 planes in a single spectrometer fired
 - ndigits number of RPC+TT digits
- Total trigger
 - (TT_trigger OR RPC_trigger) AND ndigits>10
- This trigger was applied both to MC and DATA events
 it's slightly stricter than the actual ELEDET event trigger

Distribution of vertices in detecctor of triggered v_{μ} events

Distribution of vertices of triggered events for all v_{μ} simulated events

Total production

Subvolume	Flux component	N_{prod}	$w_{ m unosc}$	$N_{ m trig}$	$w_{ m unosc}^{ m (trig)}$	$w_{ m noosc}^{ m (trig)}$	$w_{ m osc}^{ m (trig)}$
opdy_lead	$ u_{\mu} ightarrow u_{\mu}$	1000000	16862.4	969237	15199.6	15199.6	14947.6
	$\overline{ u}_{\mu} ightarrow \overline{ u}_{\mu}$	47500	350.3	45084	309.2	309.2	304.9
	$\nu_e ightarrow \nu_e$	20000	151.9	19510	137.8	137.8	137.6
	$\overline{ u}_e ightarrow \overline{ u}_e$	4000	8.8	3834	7.9	7.9	7.9
	$ u_{\mu} ightarrow u_{e}$	10000	12942.6	9993	12028.2	0.0	10.7
	$ u_{\mu} \rightarrow u_{ au}$	10000	5962.4	9940	5511.7	0.0	69.1
	$\overline{\nu_{\mu}} ightarrow \nu_{\mu}$	500000	3300.6	443080	2844.1	2844.1	2798.2
	$\overline{ u}_{\mu} ightarrow \overline{ u}_{\mu}$	10000	75.8	8722	64.3	64.3	63.4
opdy_iso	$ u_e ightarrow u_e$	5000	29.7	4438	25.6	25.6	25.6
	$\overline{ u}_e ightarrow \overline{ u}_e$	1000	1.9	861	1.6	1.6	1.6
	$ u_{\mu} ightarrow u_{ au}$	2000	1136.6	1798	992.2	0.0	11.9
	$\dot{ u_{\mu}} ightarrow u_{e}$	2000	2497.9	1801	2185.8	0.0	1.9
	$\nu_{\mu} ightarrow \nu_{\mu}$	1000000	31247.1	533960	16684.7	16684.7	16418.3
	$\overline{ u}_{\mu} ightarrow \overline{ u}_{\mu}$	100000	693.6	51430	356.7	356.7	352.2
an dat inan	$\nu_e ightarrow u_e$	30000	281.4	15201	142.6	142.6	142.5
opay_iron	$\overline{ u}_e ightarrow \overline{ u}_e$	2000	17.5	959	8.4	8.4	8.4
	$ u_{\mu} ightarrow u_{ au}$	20000	10861.6	10536	5721.9	0.0	59.9
	$ u_{\mu} \rightarrow u_{e}$	20000	23767.5	9356	11118.5	0.0	7.4
	$\nu_{\mu} ightarrow \nu_{\mu}$	1000000	67165.1	152361	10233.3	10233.3	10092.8
h anorrin a	$\overline{ u}_{\mu} ightarrow \overline{ u}_{\mu}$	150000	1541.4	29150	299.5	299.5	296.7
borexino	$\nu_e ightarrow \nu_e$	150001	604.5	14091	56.8	56.8	56.8
	$\overline{ u}_e ightarrow \overline{ u}_e$	4000	38.9	351	3.4	3.4	3.4
	$ u_{\mu} ightarrow u_{\mu}$	385000000	43672826.8	186425	21147.3	21147.3	21048.4
${\rm front_rock}$	$\overline{ u}_{\mu} ightarrow \overline{ u}_{\mu}$	1000000	1003565.8	11700	1174.2	1174.2	1171.1
	$ u_e ightarrow u_e$	4400000	393057.6	20	1.8	1.8	1.8
below_hallc	$ u_{\mu} ightarrow u_{\mu}$	2500000	2530974.2	18396	18623.9	18623.9	18410.4
	$\overline{ u}_{\mu} ightarrow \overline{ u}_{\mu}$	1000000	58159.7	10957	637.3	637.3	633.2
	$\nu_e ightarrow \nu_e$	300000	22778.9	431	32.7	32.7	32.7
aide and al and hall	$ u_{\mu} ightarrow u_{\mu}$	3990000	4147610.0	8780	9126.8	9126.8	8999.6
side_and_above_nallc	$\overline{ u}_{\mu} ightarrow \overline{ u}_{\mu}$	1000000	95308.7	1654	157.6	157.6	155.7
Total	-	412277501	52103821.2	2574056	134835.6	97 277.3	96271.6

Total number of triggered events

- MC expectancy
 - no oscillations 97277 events
 - std. oscillations 96272 events
- DATA 93458 events
- Well within 15% beam uncertainty

Neutrino oscillation parametrization

Standard 3-generation neutrino model

 Used by PDG and recommended by the Giunti book

 $\begin{aligned} |\nu_{\alpha}\rangle &= U_{\alpha k}^{*} |\nu_{k}\rangle & \Delta m_{ij}^{2} \equiv m_{i}^{2} - m_{j}^{2} \\ U &= U_{23}U_{13}U_{12} & A_{ij}^{\alpha\beta} \equiv U_{\alpha i}^{*}U_{\alpha j}U_{\beta i}U_{\beta j}^{*} \\ \phi_{ij} \equiv \frac{\Delta m_{ij}^{2}}{2} \frac{L}{E} \end{aligned}$

$$P_{\alpha \to \beta} = \delta_{\alpha\beta} - 4\sum_{i>j} \operatorname{Re}\left(A_{ij}^{\alpha\beta}\right) \sin^2 \frac{\phi_{ij}}{2} \pm 2\sum_{i>j} \operatorname{Im}\left(A_{ij}^{\alpha\beta}\right) \sin \phi_{ij}$$

$$\begin{split} & \Delta m_{21}^2 = 0 \quad \text{approximation} \\ & \text{We can use this approximation because} \\ & \text{are working below the first oscillation} \\ & \text{maximum} \\ & \text{From PDG: } \left(\frac{\Delta m_{21}^2}{\Delta m_{32}^2}\right)^2 \approx 10^{-3} \\ & P_{\alpha \to \beta; \alpha \neq \beta} = 4 \left| U_{\alpha 3}^* U_{\beta 3} \right|^2 \sin^2 \frac{\Delta m_{32}^2}{4} \frac{L}{E} \\ & P_{\alpha \to \alpha} = 1 - 4 \left| U_{\alpha 3} \right|^2 \left(1 - \left| U_{\alpha 3} \right|^2 \right) \sin^2 \frac{\Delta m_{32}^2}{4} \frac{L}{E} \\ & U = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta_{cp}} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta_{cp}} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta_{cp}} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta_{cp}} \\ & 1 & 2 & 3 & 16 \\ \end{split}$$

Parametrization used in the analysis

$$P_{e \to e} = M_{ee} \sin^2 \left(C \frac{\Delta m_{32}^2}{E} \right) \qquad C = 928.908 \frac{\text{GeV}}{\text{eV}^2}$$

$$P_{\mu \to e} = M_{\mu e} \sin^2 \left(C \frac{\Delta m_{32}^2}{E} \right) \qquad M_{\mu \tau} = M_{\mu \mu} - M_{\mu e}$$

$$P_{\mu \to \mu} = (1 - M_{\mu \mu}) \sin^2 \left(C \frac{\Delta m_{32}^2}{E} \right)$$

$$P_{\mu \to \tau} = (M_{\mu \mu} - M_{\mu e}) \sin^2 \left(C \frac{\Delta m_{32}^2}{E} \right)$$

$$P_{\alpha \to \beta} = P_{\beta \to \alpha} = P_{\overline{\alpha} \to \overline{\beta}} = P_{\overline{\beta} \to \overline{\alpha}} \qquad \qquad \blacktriangleright \text{ because } \Delta \text{m}^2_{_{21}} = 0$$

Fit parameter

- the only free parameter in this analysis is $\Delta m^2_{_{32}}$ and all the other parameters are assumed to be known a priori
- the values of oscillation parameters used in this analysis are:

$$\Delta m_{21}^2 = 0$$

 $\sin^2 \theta_{13} = 0.0210$
 $\sin^2 \theta_{23} = 0.51$

$$M_{ee} = 0.08168$$

 $M_{\mu e} = 0.03645$
 $M_{\mu \mu} = 0.98410$
 $M_{\mu \tau} = 0.94765$

Analysis

Main ideas

- Use NC/CC ratio vs. E_tt to reduce the CNGS flux uncertainty
- Compare data to MC oscillated by different values of $\Delta m^2_{_{32}}$
 - oscillated MC is obtained by multiplying event weights with appropriate oscillation probability
- Use p-value formalism to reject $\Delta m^2_{_{32}}$ for which MC is incompatible with data

- CC selection
 - good muon track exists
 - bending topology at least one digit in each of the arms of at least one spectrometer
 - reconstructed muon charge negative
- NC selection
 - no muon tracks at all
 - no bending topology
- Global selection
 - passed the trigger
 - CONTAINED
 - BF ok
 - more 600 p.e. in TT's
 - BF first brick in first 20 walls
 - is classified as either NC or CC

Selection efficiency calculated from MC

	Efficiency $(\%)$
Target	44.3
Internal	0.2
External	0.06

Interaction types under standard oscillations

Selection	Proportion of events (%)				
Selection	$\nu_{\mu} \ { m CC}$	ν and $\overline{\nu}$ NC	Other CC		
Global	82.0	16.8	1.2		
CC-like	99.5	0.2	0.3		
NC-like	20.2	75.3	4.5		

Statistics

- Consider two Poisson distributions with expectation values λ_{l} and λ_{k} .
- Suppose we measure a random variable from each of these two distributions and get *I* and *k*, respectively
- Bayesian probability distribution that $\lambda_l / \lambda_k = x$, given measurements *l* and *k*, and with a flat prior on λ_l and λ_k is given by the formula:

$$P_{l/k}(x) = \frac{(k+l+1)!}{k! \; l!} \frac{x^l}{(1+x)^{k+l+2}}$$

This formula was checked by a toy MC and is very precise

Likelihood

- For the analysis I create three histograms 1)Number of measured NC events vs. E_tt (data)
 2)Number of measured CC events vs. E_tt (data)
 3)NC/CC ratio predicted by MC vs E_tt (MC)
 - this depends on oscillation parameters
- All histograms have N bins and equal E_tt range
- I construct a likelihood function using the formula
 NC-histogram bin value

bin index

$$L(\Delta m_{32}^2) = \prod_{i=1}^{N} P_{NC_i/CC_i} \left(R_i(\Delta m_{32}^2) \right)$$

CC-histogram bin value

MC histogram bin value, dependent on oscillations

Profile likelihood

Data is a random variable of a distribution which has a true $\Delta m^2_{_{32}}$ as a parameter - in each (pseudo)experiment we get different data set due to statistical fluctuations

Test statistics (two different ones)

- we use two different test statistics:
 - "standard"

$$t_{\Delta m^2} = -2\ln\lambda(\Delta m^2)$$

- equivalent to F&C
- upper limit

$$q_{\Delta m^2} = \begin{cases} -2\ln\lambda(\Delta m^2) & \widehat{\Delta m^2} \le \Delta m^2\\ 0 & \widehat{\Delta m^2} > \Delta m^2 \end{cases}$$

- for each $\Delta m^2_{_{32}}$, these are random variables (since they depend on data, which is a random variable), and therefore they have distributions

p-values

- given the distribution of test statistics and our measurement, we can extract p-value for a given $\Delta m^2_{\ 32}$
 - if a p-value is smaller than predefined threshold, we exclude that specific $\Delta m^2_{_{32}}$
- distributions can be found using pseudo-experiments
- p-value is then:

$$p_{t_{\mu}}(\Delta m_{32}^{2}) = \int_{t_{\mu;obs}}^{\infty} f_{t_{\mu}}(t_{\mu}|\Delta m_{32}^{2})dt_{\mu}$$

$$p_{value as a} \qquad \text{observed (measured)} \qquad \text{distribution of a test statistic} \qquad \text{distribution of a test statistic} \qquad p_{q_{\mu}}(\Delta m_{32}^{2}) = \int_{q_{\mu;obs}}^{\infty} f_{q_{\mu}}(q_{\mu}|\Delta m_{32}^{2})dq_{\mu}$$

29

p-values

$\Delta m_{_{32}}^2$ measurements

- p-values calculated for Δm_{32}^2 in range [0.0,6.0]e-3 eV^2, with step 0.06e-3 eV²
- for each Δm_{32}^2 value 10000 pseudoexperiments were produced to obtain test statistic distribution

Standard test statistic

Upper limit test statistic

Lower limit systematics

Appearance components

Beam uncertainty

- The beam smearing has been implemented to investigate the effects of beam uncertainty
- Smearing algorithm
 - Neutrino events were sorted in 10 GeV bins of true neutrino energy
 - A random number was generated for each bin
 - Gaussian with mean 1.0 and standard deviation 0.15
 - Each event weight in the each bin was multiplied by the random number generated for this bin
- 1000 smeared fluxes were generated

Beam uncertainty

Likelihood function was defined as

Standard test statistic

black – not smeared pink - smeared

Upper limit test statistic

black – not smeared pink - smeared

Conclusions

- An analysis of oscillation parameters using ELDET data was performed
- A new MC simulation of interactions in OPERA and the surrounding materials have been produced both for appearance and disappearance oscillation channels
- Since we have no near detector, NC-like/CC-like ratio was used to normalize the beam
- A an upper limit on Δm_{32}^2 has been obtained, assuming $\Delta m_{21}^2=0$ and PDG mixing angles, in the analysis dominated by muon neutrino disappearance
 - a lower limit proved to be unreliable
- The result of this analysis is an reliable upper limit on Δm_{32}^2

$$\left|\Delta m_{32}^2\right| < 4.1 \cdot 10^{-3} \text{ eV}^2 @ 90\% \text{ C.L.}$$