European Scanning System

Andrey Alexandrov

Toward the automatic emulsion scanning

Before 1974 – the only way to find the charged particle tracks and decays in the nuclear emulsions was the eye inspection using manual microscopes

1974 K. Niwa: Track recognition by superimposing tomographic images from different focal planes

This was the first idea of the automatic scanning but the digital technology was not ready yet in that time (the first Digital Camera prototype from Kodak -1975)

• 1980 – First semi-automatic scanning (Nagoya)

•1985 – "Track Selector" (TS) the first automatic scanning system based on tomographic image processing. Started TS-NTS-UTS-SUTS development line (Nagoya)

•1994 – CHORUS data analysis – Italian groups enters into scanning business: two microscopes equipped with NTS systems arrived to Naples

•2004 – the first prototype of the European Scanning System dedicated for OPERA scanning operational in Naples, developed in collaboration with other Italian groups

OPERA ESS 20 cm²/h (2004 year components)

Hardware performance of a scanning system for high speed analysis of nuclear emulsions NIMA568 (2006)

Illumination system, objective (Oil $50 \times NA 0.85$) and optical tube (Nikon)

Principle of the automatic emulsion scanning

bottom layer

What the microscope CCD sees in one film..

170 µm

250 µm

Tracks&vertices reconstruction in ECC

- •Images -> microtracks
- Microtracks->basetracks
- •Plate-to-plate alignment
- Long tracks reconstruction
- Vertex location
- •Event analysis

OPERA tau event

2014 HW upgrade: ESS -> NGSS

"A new generation scanning system for the high-speed analysis of nuclear emulsions" in JINST 11 P06002 2016, doi:10.1088/1748-0221/11/06/P06002

Continuous Motion scanning technique

Proposed in 2011. First published in NIM A 718 (2013) 184–185 . **"A novel approach for fast scanning of nuclear emulsions with continuous motion of the microscope stage "**

Distortion corrections for CM

XY-corrections: up to 1.5 μ m near the view corners

Z-corrections: ~3 μm near the view corners

Microtracking performance in CM

"The Continuous Motion Technique for a New Generation of Scanning Systems" in Scientific Reports 7: 7310 2017, DOI:10.1038/s41598-017-07869-3

010-06-12 07.56.52

0 00 00 0

LASSO Large Angle Scanning System for OPERA

How fast ESS can become?

Inclined Focal Plane Motion (IM)

Horizontal axis

Possible IM implementations

Pros: Easy to implement

Cons: An objective must have the WD > 0.5 mm -> dry objectives only

Pros: Suitable for any objective type! Cons:

- 1) The camera must be inclined at a relatively large angle
- 2) Pixel size may vary across the image

Test setup

SG-IM microtracks matching

Microtracks selection: Theta > 1.25 rad Length > 90 μm

Dataset	Microtracks found
SG1+SG2+IM	187
SG1+SG2	185
IM	184

Scanning Speed vs Number of Cameras

4M camera @ 563 fps 50 μm thick emulsion 30 μm overlap (X&Y)

$$P_{IM} \approx w \frac{s f R}{\delta M} N_{cam}$$

Continuous illumination: 2 μ s camera exposure -> 3500 cm²/h Stroboscopic illumination: 30 cm/s stage speed -> 6000 cm²/h XY-stage upgrade: 2 m/s stage speed -> 40000 cm²/h = 4 m²/h

Holographic Microscopy

- Collaboration with Institute of Applied Sciences and Intelligent Systems (ISASI)
- Advantages
 - Laser beam -> very strong illumination
 - Includes phase information
 - No need to move along Z or incline camera
- Disadvantages
 - Speckles generated by coherent laser light

Summary

- Successful 14 years history
- 20 cm²/h -> 190 cm²/h in last 7 years
- Ongoing R&Ds
 - High speed
 - Super-resolution
- Applications:
 - OPERA
 - FOOT & biomedical app (Cristina's talk)
 - SHiP (Antonia's talk)
 - Muography (Valeri's talk)
 - Directional DM search (Naka's talk)

Thank You!