



Kobayashi-Maskawa Institute for the Origin of Particles and the Universe

## NEWSdm Direction Sensitive Dark Matter Search with Super-high Resolution Nuclear Emulsion

### Tatsuhiro Naka

Nagoya University@Japan On behalf of NEWSdm collaboration



```
Cold Dark Matter
```







Astrophys. J. 295: 422-436, 1985 Su

#### VERA

high precision measurement of rotation for Milkyway Galaxy





High precision measurement project of rotation velocity of Milkyway galaxy (measurement by the trigonometric parallax) <u>220 km/sec ⇒ 240 +- 14 km/sec around solar system (8kpc)</u>

#### Local dark matter density : 0.3-0.5 GeV/cm<sup>3</sup>

This value is independent on dark matter model Very much mount of DM is condensed in the halo because mean dark matter density in the universe is <u>~ 1.4 keV/cm<sup>3</sup></u> (27 % of critical density ratio)

Dark matter flux on the earth ~ 100000 /cm<sup>2</sup>/sec @ 100 GeV/c<sup>2</sup> dark matter



#### Model Independent DM Annual Modulation Result

experimental residuals of the single-hit scintillation events rate vs time and energy

#### DAMA/LIBRA-phase1+DAMA/LIBRA-phase2 (2.17 ton × yr)



Absence of modulation? No • 2-6 keV:  $\chi^2$ /dof=199.3/102  $\Rightarrow$  P(A=0) =2.9×10<sup>-8</sup>



The data of DAMA/LIBRA-phase1 +DAMA/LIBRA-phase2 favor the presence of a modulated behavior with proper features at 11.9  $\sigma$  C.L.

> R. Bernabei (DAMA/LIBRA), LNGS Scientific Committee Meeting, 26–27 March 2018 7

#### Strong absorption of H 21 cm line





High strong absorption of H21 cm line in the red

#### **Baryo-DM cross section > ~10**-43 cm<sup>2</sup>

Nature: doi:10.1038/nature25791

Nature : doi:10.1038/nature25792



 R&D towards possible DAMA/LIBRA-phase3 continuing: i) new protocols for possible modifications of the detectors; ii) alternative strategies under investigation; moreover, 4 new PMT prototypes from a dedicated R&D with HAMAMATSU already at hand.

 Improving the light collection of the detectors (and accordingly the light yields and the energy thresholds). Improving the electronics.

 Other possible option: new ULB crystal scintillators (e.g. ZnWO<sub>4</sub>) placed in betwee the DAMA/LIBRA detectors to add also a high sensitivity directionality meas.

The presently-reached metallic PMTs features:

- Q.E. around 35-40% @ 420 nm (NaI(Tl) light)
- Radiopurity at level of 5 mBq/PMT (<sup>40</sup>K), 3-4 mBq/PMT (<sup>232</sup>Th), 3-4 mBq/PMT (<sup>238</sup>U), 1 mBq/PMT (<sup>226</sup>Ra), 2 mBq/PMT (<sup>60</sup>Co).

4 prototypes at hand

## Directional information!!

ZnWO4 scintillator (not demonstrated yet for low-energy recoil)

Other Idea by solid detector or high dense gas

- Carbon nanotube + TPC
- Collumner recombination
- $\rightarrow$  not demonstrated yet

## Direction Sensitive Dark Matter Search



#### ⇒ new systemic search with " new degree of freedom"

## Information from directional search



Phys. Rev. D. 96, 083011 (2017)



#### ✓ Does DM have really Maxwellian ?

Dark matter flow ?

e.g., C. O'Hare and A. Green, Phys. Rev. D 90, 123511 (2014)

Anisotropic distribution?

F. S. Ling et al., JCAP 1002, 012 (2010)



## Challenge for Direction Sensitive Dark Matter technologies



## New technical challenge !!

Low mass (~10 GeV/c2) search : light target + < 200 nm length High mass (> 100 GeV/c2) search : heavy target + < ~700 nm

## NEWSdm ~Nuclear Emulsions for WIMP Search + directional measurement



http://news-dm.lngs.infn.it

NEWS: Nuclear Emulsions for WIMP Search Letter of Intent (NEWS Collaboration)

#### 2015: Submitted LOI to LNGS science committee

## NEWSdm experimental strategies

Underground laboratory (LNGS). In future, multi-site observation (e.g., LNGS and SNOLAB)

## Device self-production

#### **Super-high resolution device**



Exposure +

#### chemical development

Equatorial Telescope

- Underground facility
- Run mounting the equatorial telescope



#### Readout + analysis R&D on going

## NEWSdm experimental strategies

## Device self-production

#### **Super-high resolution device**



Exposure +

#### chemical development

Equatorial Telescope

- Underground facility
- Run mounting the equatorial telescope

- High speed scanning
- Super-high resolution microscopy
- Cutting-edge technologies for optics

Readout + analys R&D on going



Clean environment for the emulsion handling
equatorial Telescope



#### First demonstration of detection of submicron tracks

#### **SEM (Scanning Electron microscope) observation**



Natsume et al,. NIM A575 (2007) 439

## Device self-production



 Production time : 4-5 hours /batch
 One butch : ~ 100 g (+ 300 g) (there are 2 type machines)
 ⇒ kg scale production is possible using this machine.

#### **Controlled AgBr crystal**



**T. Asada, T. Naka + ,** Prog Theor Exp Phys (2017) 2017 (6): 063H01

#### Pb 150GeV/n beam (exposed at CERN)

\* Optical microscope image

#### Normal emulsion



#### Nano Imaging Tracker



## **Case of electron microscope image**





## prototype film of NIT for dark matter experiment



**Elemental composition of NIT** 

|                | Mass fraction | Atomic Fraction |
|----------------|---------------|-----------------|
| Ag             | 0.44          | 0.10            |
| Br             | 0.32          | 0.10            |
| I              | 0.019         | 0.004           |
| С              | 0.101         | 0.214           |
| 0              | 0.074         | 0.118           |
| N              | 0.027         | 0.049           |
| Н              | 0.016         | 0.410           |
| S, Na + others | ~ 0.001       | ~ 0.001         |



Size : 10 x 12 cm<sup>2</sup> NIT layer thickness : ~ 50-70 μm Base material : PMMA (pre-treatment in Nagoya by ourselves)

Target mass ~2 g/film

#### Intrinsic radioactivity :

|         | C-14  | Ag-110m | K-40 | Th-232 | U-238 |
|---------|-------|---------|------|--------|-------|
|         | 24000 | (~400)  | 35   | 6      | 27    |
| nBq/kg] | [m    |         |      |        |       |

Intrinsic neutron emission:

~ 1.2 /kg/y (by SOURCE simulation)

 $\Rightarrow$  ~ 0.1 /kg/y ( > 100 nm nuclear recoil)

Protection coat by

## NIT emulsion potential





NIT detector / CNO sensitive / no Bkg no directionality Simulation limit is "energy > 5 keV for all atoms (SRIM limit)" & "Sensitivity > 0.1 % (Simulation statistics limit;10 event)"

### **Development of New Readout System**

#### Prototype R&D system @Nagoya and Napoli





#### Low-velocity ion tracking Can use ion implantation as calibration source

- Mono energy ( $\pm 0.1$  keV)
- Good direction uniformity (<10 mrad)
- Now, C from CO<sub>2</sub> Ar, Kr (but other various ion is possible)

**100 keV Carbon SEM image** 



Low velocity ion created by an ion-implantation system Side view of i ion direction 7cm × 3cm implantation area ion direction emulsion film 10 degree

AgBr crystal has good sensitivity about Carbon (~ 100 % efficiency)

2018/6/1

Performance using only elliptical shape analysis Candidate selection method using Readout efficiency PTS-1.5(Ellipticity>=1.25,1.40,1.60 & minor>=4.8) epi-illuminated optical microsco Track length v.s. Ellipticity [Xid 2.8 ents)



**Angular resolution :** 

studying.

K. Kimura and T. Naka, Nucl. Inst. Meth. A 680 (2012) 12-17 T. Katsuragawa et al, JINST 12 T04002 (2017)





## Localized Surface Plasmon Resonance (LSPR)



- Resonance wavelength depends on the crystal size
- Polarization angle dependence of resonance wavelength reflect the shape of nano-scale structure

## Optical response due to LSPR

#### Silver-nano particle







## Optical response due to the Plasmon resonance for the developed silver grains for the NIT





## 2014 Nobel Prize in Chemistry



The Nobel Prize in Chemistry 2014 was awarded jointly to Eric Betzig, Stefan W. Hel William E. Moerner *"for the development of super-resolved fluorescence microscop"* 

**Beyond diffraction limit concept** 

e.g., STED, STORM







## First demonstration



Calibration of position accuracy ~ spatial resolution using single Ag nano particle



## Demonstration of tracking to very short length tracks



## New plasmon nano-tracking system [prototype]



New epi-illuminated optical microscope system @ Napoli University, Italy



## Position accuracy for the plasmonic readout system



## Automatic analysis system for the plasmonics



#### cl 3474 in frame 140 at xy: -4.46 11.04



Angular distribution using only

## Demonstration of the direction sensitivity have been done .

# PLASMON ANALYSIS UPDATES PRIMINAN

PDF Ratio between C 30 keV ion horizontal samples and vertical sample

Expected: 90° - Measured: 90° 1807 Entries Entries 1911 Mean 1.828 amplitude (H/V) Mean 1.572 Std Dev 0.8707 0.8051 Std Dev  $\chi^2$  / ndf 47.14/42 y² / ndf 41.57 / 40 3.5  $1.964 \pm 0.149$ p0. 3.5 DÜ  $1.869 \pm 0.161$ **p1**  $2.373 \pm 0.037$  $1.564 \pm 0.034$ p1  $0.4938 \pm 0.0348$ p2  $0.4158 \pm 0.0392$ p2 03 1.298 ± 0.052 03  $1.432 \pm 0.064$ 2.5 2.5 1.5 0.5 0.5 2.5 1.5 2.5 3 0.5 1.5 ¢ [rad] 

Expected: 135° - Measured: 136°

V. Gentile's slide in this meeting

## Further new technlogies

- color information
- ➢ 3D nano-tracking
- >Multi-variant analysis
- >Machine learning
- Phase information

Scintillation information from NIT emulsion

Quite new readout information and - technologies with cutting-edge optics and technologies

## β-ray event rejection potential



- □ Cryogenic crystal effect
  - crystal quantum efficiency is drastically decrease by lower temperature
  - nuclear recoil is not by the thermal spike
- ⇒ Powerful discrimination between nuclear recoil and electron e.g.) expected BG signal eff. due to electron < 10<sup>-9</sup> @80K

Chemical treatment

- Nuclear recoil can create enough number of e-h pair for the Ag core
- Dopant in the AgBr crystal to suppress the sensitivity only electron
- Low background material
  - gelatin have high C-14 level
  - replacement to the synthetic polymer
  - $\Rightarrow$  at least > 10<sup>3</sup> rejection
    - (aleady measured byAMS)



As potential, > 10<sup>9</sup> rejection power is expected by combination of some techniques

 $\Rightarrow$  Now, constructing the calibration system in the LNGS

## Pilot-run environment and shield

#### Gran Sasso underground laboratory, Italy





#### New site for NEWSdm experiment at LNGS



#### Schedule :

 $\sim$  Dec. 2017 : construction of the hall

~ April. 2018 : construction of inside the hall and infrastructure

May – August , 2018 : install the new emulsion production machine

~ Sep., 2018 : commissioning of facility and background run





## Conclusion

- > Dark matter is one of the most important subject in nature science
- > ACDM model is concordance in cosmology, and CDM as WIMP is very promising candidate
- Recent observation (e.g., DAMA/LIBRA, H21cm) may have proof that non-zero DM-baryon interaction ( around 10<sup>-42</sup> cm<sup>2</sup>)
- Super-fine grained nuclear emulsion (Nano Imaging Tracker : NIT) is the highest resolution detector in the world, and very promising detector for direction-sensitive dark matter detection
- > NEWSdm project is very unique experiment toward directional dark matter search
- > Quite new technologies continue producing as "nano-tracking technologies"

#### Low-energy frontier will be very interesting from now, not only high energy physics