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} The Standard Model provides an 
explanation for many subatomic 
processes 

} Although very successful, it fails to 
explain many observed phenomena 

Dark Matter 
Neutrino Oscillation and masses 
Matter/antimatter asymmetry in 
the Universe 

} A Hidden Sector (HS) of weakly-
interacting BSM particles as an 
explanation Energy scale
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Unknown 
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Energy Frontier 
(LHC, FCC)

Intensity Frontier 
(fixed target)

SHiP facility

Intensity Frontier:  
Very weakly interacting particles 
→ high intensity beam needed

Energy Frontier: 
Heavy particles → high energy 
collisions needed 

MOTIVATION

} SHiP: new fixed target facility at the intensity frontier to explore Hidden Sector  
} Neutrino physics  
} Light Dark Matter search

Several portals to the HS: scalar portal, neutrino portal, vector portal, SUSY…
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} SHiP (Search for Hidden Particles) in a 
proposed fixed target experiment at 
CERN SPS  

} Collaboration of 250 members from 49 
institutes, 17 countries  

} Technical Proposal                                           
arXiv:1504.04956 (2015) 

} Physics case signed by 80 theorists 
Rep. Prog. Phys. 79 (2016)                    
arXiv:1504.04855 

} Positive SPSC recommendation 
} Comprehensive Design Study by 2019 
→ decision about approval in 2020 

} Important actor in the CERN Physics 
Beyond Colliders study group

THE SHiP PROJECT



THE SHiP FACILITY
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Location: Prevessin North Area site 

Sharing of the TT20 transfer line 
and slow  extraction mode with the 
fixed target programs   

} Fixed target experiment at the CERN SPS 
} Beam: 400 GeV protons (4x1013 protons per spill) 

➙ 2x1020 pot in 5 years



THE SHiP DETECTOR
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~150 m



THE SHiP DETECTOR
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} Designed for large acceptance and zero background

Active muon 
shield

Emulsion 
detector

Decay vessel

Tracker 
spectrometer 
Particle ID

~150 m

Example of Hidden Sector search: 
Right-handed Neutrinos in the 
νMSM

Target and 
hadron absorber

} 400 GeV protons on ~1 m long TZM, W target



THE SHiP DETECTOR
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} Designed for large acceptance and zero background

Active muon 
shield

Emulsion 
detector

Decay vessel

Tracker 
spectrometer 
Particle ID

Target and 
hadron absorber

} Reduction of neutrino background
} Stop pion and kaons before decay 
} Evacuate the vessel

~150 m



THE SHiP DETECTOR
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} Designed for large acceptance and zero background

Active muon 
shield

Emulsion 
detector

Decay vessel

Tracker 
spectrometer 
Particle ID

Target and 
hadron absorber

} Reduction of neutrino background
} Reduction of muon background

} Magnetic deflection in the shield 
} Particle ID 
} Surround veto taggers 
} Timing detector 
} Pointing criteria

~150 m



THE SHiP DETECTOR
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} Designed for large acceptance and zero background

Emulsion 
detector

Decay vessel

Target and 
hadron absorber

} Reduction of neutrino background
} Reduction of muon background

Active muon 
shield

Tracker 
spectrometer 
Particle ID

} Wide physics program
} Variety of possible decay modes 
} Tau-neutrino physics 
} Light Dark Matter

~150 m



SENSITIVITIES
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Based on 2x1020 pot 
@400 GeV in 5 years

NEUTRINO PORTAL SCALAR PORTAL

VECTORIAL PORTAL AXION PORTAL



NEUTRINO PHYSICS @SHiP
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} High neutrino flux expected 
} Unique possibility of performing studies of νµ, νe, ντ

} Energy spectrum of different 
neutrino flavors @beam dump



TAU NEUTRINO PHYSICS
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} High neutrino flux expected 
} ντ: the less known particle in the Standard Model 

DONUT: 9 observed ντ candidate events (leptonic number not measured) 
OPERA: discovery of νµ➙ντ oscillations in appearance mode

ντ not detected yet!



NEUTRINO DETECTOR
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REQUIREMENTS 
} High spatial resolution to observe 

the τ decay (~1 mm) 
  ➙ EMULSION FILMS 

} Electronic detectors to give “time” 
resolution to emulsions 

  ➙ TARGET TRACKER PLANES 
} Magnetized target to measure the 

charge of τ products 
      ➙ MAGNET 

} Magnetic spectrometer to measure 
muon momentum 

               ➙ SPECTROMETER 
} Muon filter to perform muon 

identification 
     ➙ MUON FILTER



NEUTRINO DETECTOR
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NEUTRINO TARGET
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Emulsion Cloud Chamber (ECC)  
BRICK 

} Passive material (Lead) - 56 layers -   
} High resolution tracker (Nuclear 

emulsions) - 57 films - 
} 10 X0

PERFORMANCES  
} Primary and secondary vertex 

definition with µm resolution   
} Momentum measurement by 

Multiple Coulomb Scattering 
     - largely exploited in the    
       OPERA experiment - 
} Electron identification: shower ID  

through calorimetric technique



LEPTON FLAVOR IDENTIFICATION
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Emulsion Cloud Chamber technique 
Lead plates (high density material for the interaction) interleaved with     
emulsion films (tracking devices with µm resolution)

OPERA 3rd ντ candidate event

‣ νμ identification: muon reconstruction in the magnetic spectrometer 
‣ νe identification: electron shower identification in the brick 
‣ ντ identification: disentanglement of τ production and decay vertices



ντ/ANTI-ντ SEPARATION
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REQUIREMENTS 
} Electric charge measurement of τ 
lepton decay products 

} Key role for ντ/ντ separation in                    
the τ➙h decay channel 

} Momentum measurement  

LAYOUT 
} 3 OPERA-like emulsion films  
} 2 Air gaps 
} 1.2 Tesla magnetic field

PERFORMANCES 

‣ Sign of the electric charge can be 
determined with better than 3 standard 
deviation level up to 12 GeV 

‣ The momentum of the track can be 
estimated from the sagitta 

‣ ∆p/p < 20% up to 12 GeV/c

Charge measured from the curvature of the 
track with the sagitta method
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ντ	PHYSICS 
} ντ and anti-ντ  produced in the leptonic decay of a D−s meson into τ- and anti-ντ, 

and the subsequent decay of the τ− into a ντ	
} Number of ντ	 and anti-ντ  produced in the beam dump 

} Main background source: charm production in νµCC (anti-νµCC) and νeCC (anti-νeCC) 

interactions, when the primary lepton is not identified

} Geometrical, location and 
decay search efficiencies 
considered 

} Expectations in 5 years run 
(2x1020pot)

N⌫⌧+⌫̄⌧ = 4Np
�cc̄

�pN
fDsBr(Ds ! ⌧) = 2.85⇥ 10�5Np = 5.7⇥ 10153.26 6.5

SIGNAL 
EXPECTATION BACKGROUND

R = S/B RATIO



STRUCTURE FUNCTIONS
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First evaluation of F4 and F5, not accessible with other neutrinos  

.

F4 = F5 = 0

ντ CC DIS cross-section 

SM prediction

E(ντ) < 38 GeV 
(~300 events expected)

CC interacting ντ

r = ratio between the cross 
sections in the two hypotheses 



CHARM PHYSICS @SHiP

20

} Large charm production in νµCC and νeCC 
interactions 

} Process sensitive to strange quark content of 
the nucleon

} Charm production with electronic detectors tagged by di-muon events (high 
energy cut to reduce background) 

} Nuclear emulsion technique: charmed hadron identification through the 
observation of its decay 

} Loose kinematical cuts ➙ good sensitivity to the slow-rescaling threshold 
behavior and  to the charm quark mass



STRANGE QUARK NUCLEON CONTENT
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} Charmed hadron production in anti-neutrino 
interactions selects anti-strange quark in the 
nucleon

} Improvement achieved on s+/s- versus x  
} Significant gain with SHIP data (factor 2) 

obtained in the x range between 0.03 and 0.35

Observed anti-ν in CHORUS ~32 
                              in NuTeV   ~1400 

                  Expected in SHIP ~ 27 000



LIGHT DARK MATTER SEARCH
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} The prediction for the mass scale of Dark Matter spans from 10-22 to 1020 GeV 
} WIMP Dark Matter is a popular theoretical model (“WIMP miracle”) 
} Extensive experimental search for WIMP with masses 10 GeV/c2 -1 TeV/c2 

} Sensitivity very limited for 
masses below a few GeV

} Essential to explore sub-GeV 
mass range for Dark Matter



LIGHT DARK MATTER PROSPECTS@SHiP
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mV/mX = 5

} High energy beam dump:  
➙ LDM-electron scattering is highly peaked 
in the forward direction

} Generated in the beam-dump, e.g. via 
light dark photon mediators (V) 

} Main production modes 
1) direct production 
2) decay in flight 
3) resonant vector meson mixing  

LDM PRODUCTION

LDM DETECTION
} LDM elastic scattering on atomic electrons 

of the target

Emulsion 
Detector
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‣ Charm production in proton interactions and in hadron cascades in the SHiP 
target important for Hidden Sector searches normalization and ντ cross-section 
measurement

‣ Missing information: charm production in 
hadron cascades 

‣ Charm yield from cascade expected 2.3 
times larger than prompt contribution 

‣ Inclusive double-charm cross-section 
measured in NA27 using thin target

SHiP-CHARM PROJECT: Motivation
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SHiP-CHARM PROJECT: Conceptual design
‣ Double-differential cross-section measurement (d2σ/dEdθ) 
‣ Proton collisions in Mo/W target instrumented with nuclear emulsions 
‣ Nuclear emulsions as tracking detector 

- identification of hadronic and leptonic charm decay modes 
- volume of sensitive layers << target volume 

‣ Charm daughters charge and momentum by a dedicated Spectrometer based on silicon 
pixel detectors, Scintillator fibers and drift tubes 

‣ Muon identification with a Muon Tagger based on RPC

p!
(400 GeV)!

Muon TaggerSpectrometer

Instrumented 
Target

not to scale

Magnetized!
Volume!
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MEASUREMENT IN 2018
‣ Lead target, 12×10 cm2 Pb blocks (few cm) interleaved with emulsion to 

identify charm topology 
‣ Spectrometer to measure momentum and charge of the charm 

daughters 
‣ Muon tagger to identify muons

~10 m



EXPOSURE CONFIGURATION
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‣ Target material: lead 
‣ Instrumentation of ~1.6 λ to study charm production in 

primary interactions and hadron cascades 

~1.6 λ   	

‣ Fraction of charm produced in ~1.6 λ 
‣ 92% primary production 
‣ 55% cascade production

‣ Instrumentation of ~1.6 λ  allows the study of a 
large fraction of charmed hadrons  

‣ Five Emulsion Cloud Chambers (ECC)  
‣ ECC is the most downstream target part to let 

charm daughters reach the spectrometer 
‣ Target modules retained upstream of the ECC
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ECC TARGET
‣ Target mover to have protons uniformly distributed on the emulsion films 
‣ Design:     shift along y axis during the spill 

‣  Shift along x axis in the inter-spill

2018 EXPOSURE PLAN 

‣ Maximum track density in emulsion films: 103/
mm2 

‣ Emulsion surface available in July 2018: 10 m2 

‣ ~20 ECC bricks exposed to proton beam with 
maximum intensity 104 pot/spill 

‣ Fully reconstructed charm-pairs: ~150 

Full data taking after LS2: ~1000 fully reconstructed charm pairs



CONCLUSIONS
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} SHiP is a fixed target experiment proposal al CERN SPS at the 
intensity frontier 

} High energy beam dump: large variety of Hidden Sector portals 
explored  

} Wide physics program with the Neutrino/Light Dark Matter Detector 
} SHiP-charm measurement in July 2018



BACKUP SLIDES
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HIDDEN SECTOR AND NEUTRINOS
} Hidden Sector accessible to intensity frontier experiments via sufficiently 

light particles, coupled to the Standard Model sector via renormalizable 
“portals”

} SHiP: new fixed target facility at the intensity frontier to explore Hidden 
Sector  

} Neutrino physics  
} Light Dark Matter search

VISIBLE SECTOR HIDDEN SECTOR

(Standard Model)
X

Messenger  
interaction

(Singlets of the SM 
gauge group)

‣Several portals to the HS: scalar portal, neutrino portal, vector portal, SUSY… 
‣All of these can be probed at the intensity frontier with SHiP!



STANDARD MODEL PORTALS
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} Kinetic mixing with the dark photon 
} Possible dark matter candidate 

VECTOR PORTAL HIGGS PORTAL

Production of the dark photon at CERN SPS 
} proton bremsstrahlung 
} decay of pseudo-scalar mesons 
} limits on mean life from BBN τγ <0.1s 

  
Dark photons decay 
} e+e-, µ+µ-,qq 
} light dark matter χχ

- -

} Scalar singlet 
} Mixing with the SM Higgs 

Main production mechanism 
} Rare decay of B mediated by light 

scalar φ 
  

Decay channels 
} e+e-, µ+µ-
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STANDARD MODEL PORTALS

} Pseudo-scalar particles  
      (pNGB, Axions, ALPs) 
} Produced by symmetry breaking at high 

mass scale F 
} Interaction proportional to 1/F 
} Mixing with SM particles proportional to 

mX/F

AXION PORTAL NEUTRINO PORTAL

Production mechanism 
} Mixing with π0 

  
Decay channels 
} e+e-,	μ+μ-,	qq,	γγ-

} Mixing with right-handed neutrino 
(details in the following slides)

… and possibly higher dimensional 
operators portals and Super-
Symmetric portals 

(light neutralino, light sgoldstino, … )

SUSY PORTAL
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NEUTRINO PORTAL
} νMSM: ν-Minimal Standard Model 
3 additional Heavy Neutral Leptons: right-handed Majorana neutrinos

} N1      : Dark Matter candidate 
} N2,3   : give mass to neutrinos via see-saw 

mechanism, produce baryon asymmetry 
              

T.Asaka, M.Shaposhnikov PL B620 (2005) 17 
M.Shaposhnikov Nucl. Phys. B763 (2007) 49
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N1: DARK MATTER CANDIDATE
} Weak coupling with other leptons   
} Mass(N1) ~ 10 KeV 
} Enough stable to be a dark matter candidate

mixing v-N dominant process
subdominant 

radiative decay

} GALACTIC HINTS 
} Astr. Phys. J. 789 (2014) 13,           

Phys. Rev. Lett. 113 (2014) 251301 
} Not identified line in the X-ray 

spectrum of Andromeda and Perseus 
galaxies (E𝛾=3.5 keV)
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N2,3: PRODUCTION AND DECAY
} Mass(N2) ~ Mass(N3) ~ few GeV 
} Weak mixing with active neutrino  

➙ very long lifetimes wrt SM particles >10 µs  
       ➙ flight length ~km

PRODUCTION
DECAY 
} Br(N →µ/e	π) ~ 0.1 - 50 % 
} Br(N →µ/e	ρ)  ~ 0.5 - 20% 
} Br(N →νµe)     ~   1 - 10%

} Mixing with active 
neutrino 

} Semi-leptonic decay 



REQUIREMENTS
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} High intensity beam dump experiment ⇒ K, D, B mesons                                      

} Long-lived, weakly interacting particles require:                                            
- large decay volume    
- shielded from SM particles                                            

} Spectrometer, Calorimeter, PIDS                                                                 

      SIGNAL SIGNATURE 
} charged tracks forming an isolated vertex inside the 

fiducial volume acceptance                                        
} Candidate momentum pointing back to the target                                             
} “silent” VETO detectors

W/Mo
target
~1m

  Fe ~1m

Muon shield
~50m

ντ detector
~10m

Detector volume
~100m

p           
π/K

muon

neutrino

Ex. N2,3

π

µ

Tracking + 
Spectrometer

Vacuum

not to scale


