

0

THE SHIP EXPERIMENT AT CERN

Antonia Di Crescenzo Università Federico II and INFN

MOTIVATION

- The Standard Model provides an explanation for many subatomic processes
- Although very successful, it fails to explain many observed phenomena
 - Dark Matter Neutrino Oscillation and masses Matter/antimatter asymmetry in the Universe
- A Hidden Sector (HS) of weaklyinteracting BSM particles as an explanation

 \rightarrow high intensity beam needed

Energy Frontier:

Heavy particles → high energy collisions needed

- SHIP: new fixed target facility at the intensity frontier to explore Hidden Sector
- Neutrino physics
- Light Dark Matter search

Several portals to the HS: scalar portal, neutrino portal, vector portal, SUSY ...

THE SHIP PROJECT

•

CERN-SPSC-2015-016 SPSC-P-350 8 April 2015

Search for Hidden Particles

Steered uset southusest; and encountered a hearier sea than they had not with before in the whole voyage. Sau pardelas and a preen ruch near the ressel. The crew of the Phita sau a cane and a log; they also picked up a stick which appeared to have been carred with an irron tool, a piece of care, a plant which proves on land, and a board. The crew of the Nina sau other signs of land, and a stalk loaded with rose berries. These signs encouraged them, and they all prew cheerful. Sailed this day till sunset, twenty-seven leagues.

After sunset steeved their original course clest and sailed tuelve miles an hour till two hours after michight, point ninety miles, which are tuenty two leagues and a half and as the Pinta clas the suiftest sailer, and kept ahead of the fudwird,

she discovered land

Technical Proposal

- **SHIP** (Search for Hidden Particles) in a proposed fixed target experiment at CERN SPS
- Collaboration of 250 members from 49 institutes, 17 countries
- Technical Proposal arXiv:1504.04956 (2015)
- Physics case signed by 80 theorists Rep. Prog. Phys. 79 (2016) arXiv:1504.04855
- Positive SPSC recommendation
- Comprehensive Design Study by 2019
 → decision about approval in 2020
- Important actor in the CERN Physics Beyond Colliders study group

THE SHIP FACILITY

- Fixed target experiment at the CERN SPS
- Beam: 400 GeV protons (4x10¹³ protons per spill)
 - \rightarrow 2x10²⁰ pot in 5 years

Location: Prevessin North Area site

Sharing of the TT20 transfer line and slow extraction mode with the fixed target programs

- Designed for large acceptance and zero background
- ▶ 400 GeV protons on ~1 m long TZM, W target

Tracker

- Designed for large acceptance and zero background
- Reduction of neutrino background
 - Stop pion and kaons before decay
 - Evacuate the vessel

- Designed for large acceptance and zero background
- Reduction of neutrino background
- Reduction of muon background
 - Magnetic deflection in the shield •
 - Particle ID
 - Surround veto taggers
 - **Timing detector**
 - Pointing criteria

Tracker spectrometer **Particle ID**

- Designed for large acceptance and zero background
- Reduction of neutrino background
- Reduction of muon background
- Wide physics program
 - Variety of possible decay modes
 - Tau-neutrino physics
 - Light Dark Matter

Tracker spectrometer **Particle ID**

SENSITIVITIES

Based on 2x10²⁰ pot @400 GeV in 5 years

VECTORIAL PORTAL

10⁻¹

10⁻²

10⁻¹

m_A [GeV]

10⁰

10¹

NEUTRINO PHYSICS @SHiP

- High neutrino flux expected
- Unique possibility of performing studies of vµ, ve, vT

Energy spectrum of different neutrino flavors @beam dump

TAU NEUTRINO PHYSICS

- High neutrino flux expected
- v_{τ} : the less known particle in the Standard Model

DONUT: 9 observed v_{τ} candidate events (leptonic number not measured) **OPERA**: discovery of $v_{\mu} \rightarrow v_{\tau}$ oscillations in appearance mode

$\overline{\nu_{\tau}}$ not detected yet!

NEUTRINO DETECTOR

REQUIREMENTS

 High spatial resolution to observe the τ decay (~1 mm)

→ EMULSION FILMS

 Electronic detectors to give "time" resolution to emulsions

→ TARGET TRACKER PLANES

 Magnetized target to measure the charge of τ products

→ MAGNET

 Magnetic spectrometer to measure muon momentum

→ SPECTROMETER

 Muon filter to perform muon identification

→ MUON FILTER

NEUTRINO DETECTOR

14

NEUTRINO TARGET

Emulsion Cloud Chamber (ECC) BRICK

- Passive material (Lead) 56 layers -
- High resolution tracker (Nuclear emulsions) - 57 films -

▶ 10 X₀

PERFORMANCES

- Primary and secondary vertex definition with µm resolution
- Momentum measurement by Multiple Coulomb Scattering
 - largely exploited in the OPERA experiment -
- Electron identification: shower ID through calorimetric technique

LEPTON FLAVOR IDENTIFICATION

Emulsion Cloud Chamber technique

Lead plates (high density material for the interaction) interleaved with **emulsion films** (tracking devices with **µm resolution**)

- v_{μ} *identification*: muon reconstruction in the magnetic spectrometer
- *v_e identification:* electron shower identification in the brick
- v_{τ} identification: disentanglement of τ production and decay vertices

$\nu_{\tau}/ANTI-\nu_{\tau}$ SEPARATION

REQUIREMENTS

- Electric charge measurement of τ lepton decay products
- Key role for v_{τ}/v_{τ} separation in the $\tau \rightarrow$ h decay channel
- Momentum measurement

LAYOUT

- 3 OPERA-like emulsion films
- 2 Air gaps
- 1.2 Tesla magnetic field

Charge measured from the curvature of the track with the **sagitta** method

PERFORMANCES

- Sign of the electric charge can be determined with better than 3 standard deviation level up to 12 GeV
- The momentum of the track can be estimated from the sagitta
- $\Delta p/p < 20\%$ up to 12 GeV/c

ν_{τ} PHYSICS

- v_{τ} and anti- v_{τ} produced in the leptonic decay of a D⁻s meson into τ^{-} and anti- v_{τ} , and the subsequent decay of the τ^- into a ν_{τ}
- Number of v_{τ} and anti- v_{τ} produced in the beam dump

G

$$N_{\nu_{\tau}+\bar{\nu}_{\tau}} = 4N_p \frac{\sigma_{c\bar{c}}}{\sigma_{pN}} f_{D_s} Br(D_s \to \tau) = 3.26 \times 10^{-5} N_p = 6.5 \times 10^{15}$$

• Main background source: charm production in v_{μ}^{CC} (anti- v_{μ}^{CC}) and v_{e}^{CC} (anti- v_{e}^{CC}) interactions, when the primary lepton is not identified

	SI EXPEC	GNAL	N BA		GROU	ND R = S	5/B RA	TIO
Geometrical, location and decay search efficiencies considered Expectations in 5 years run (2x10 ²⁰ pot)	decay channel	N^{exp}	ν_{τ} N^{bg}	R	Nexp	$\overline{ u}_{ au} N^{bg}$	R	
	$ au o \mu$	570	30	19	290	140	2	
	au o h	990	80	12	500	380	1.3	
	au ightarrow 3h	210	30	7	110	140	0.8	
	total	1770	140	13	900	660	1.4	

STRUCTURE FUNCTIONS

First evaluation of F₄ and F₅, not accessible with other neutrinos

$$\begin{split} \frac{d^2 \sigma^{\nu(\overline{\nu})}}{dx dy} &= \frac{G_F^2 M E_{\nu}}{\pi (1 + Q^2 / M_W^2)^2} \left((y^2 x + \frac{m_\tau^2 y}{2E_{\nu} M}) F_1 + \left[(1 - \frac{m_\tau^2}{4E_{\nu}^2}) - (1 + \frac{M x}{2E_{\nu}}) \right] F_2 \\ &\pm \left[xy(1 - \frac{y}{2}) - \frac{m_\tau^2 y}{4E_{\nu} M} F_3 + \frac{m_\tau^2 (m_\tau^2 + Q^2)}{4E_{\nu}^2 M^2 x} F_4 + \frac{m_\tau^2}{E_{\nu} M} F_5 \right), \end{split}$$

r = ratio between the cross sections in the two hypotheses

 $F_4 = F_5 = 0$

E(v_τ) < 38 GeV (~300 events expected)

CHARM PHYSICS @SHiP

- Large charm production in ν_{μ}^{CC} and ν_{e}^{CC} interactions
- Process sensitive to strange quark content of the nucleon

- Charm production with electronic detectors tagged by di-muon events (high energy cut to reduce background)
- Nuclear emulsion technique: charmed hadron identification through the observation of its decay
- Loose kinematical cuts -> good sensitivity to the slow-rescaling threshold behavior and to the charm quark mass

STRANGE QUARK NUCLEON CONTENT

 Charmed hadron production in anti-neutrino interactions selects anti-strange quark in the nucleon

Improvement achieved on s+/s-versus x
Significant gain with SHIP data (factor 2) obtained in the x range between 0.03 and 0.35

Observed anti-v in CHORUS ~32 in NuTeV ~1400 Expected in SHIP ~ 27 000

LIGHT DARK MATTER SEARCH

- The prediction for the mass scale of Dark Matter spans from 10⁻²² to 10²⁰ GeV
- WIMP Dark Matter is a popular theoretical model ("WIMP miracle")
- Extensive experimental search for WIMP with masses 10 GeV/c² -1 TeV/c²

Sensitivity very limited for masses below a few GeV

 Essential to explore sub-GeV mass range for Dark Matter

LIGHT DARK MATTER PROSPECTS@SHiP

LDM PRODUCTION

- Generated in the beam-dump, e.g. via light dark photon mediators (V)
- Main production modes
- 1) direct production
- 2) decay in flight
- 3) resonant vector meson mixing

LDM DETECTION

- LDM elastic scattering on atomic electrons of the target
- High energy beam dump:
 - → LDM-electron scattering is highly peaked in the forward direction

SHiP-CHARM PROJECT: Motivation

Charm production in proton interactions and in hadron cascades in the SHiP target important for Hidden Sector searches normalization and v_T cross-section measurement

 Inclusive double-charm cross-section measured in NA27 using thin target

	exp NA27
$\sigma[\mu \mathrm{b}]$	18.1 ± 1.7

 Missing information: charm production in hadron cascades

 Charm yield from cascade expected 2.3 times larger than prompt contribution

SHiP-CHARM PROJECT: Conceptual design

- Double-differential cross-section measurement (d²σ/dEdθ)
- Proton collisions in Mo/W target instrumented with nuclear emulsions
- Nuclear emulsions as tracking detector
 - identification of hadronic and leptonic charm decay modes
 - volume of sensitive layers << target volume
- Charm daughters charge and momentum by a dedicated Spectrometer based on silicon pixel detectors, Scintillator fibers and drift tubes
- Muon identification with a Muon Tagger based on RPC

MEASUREMENT IN 2018

- Lead target, 12×10 cm² Pb blocks (few cm) interleaved with emulsion to identify charm topology
- Spectrometer to measure momentum and charge of the charm daughters
- Muon tagger to identify muons

EXPOSURE CONFIGURATION

- Target material: lead
- \blacktriangleright Instrumentation of ${\sim}1.6~\lambda$ to study charm production in

primary interactions and hadron cascades

- Instrumentation of ~1.6 λ allows the study of a large fraction of charmed hadrons
- Five Emulsion Cloud Chambers (ECC)
- ECC is the most downstream target part to let charm daughters reach the spectrometer
- Target modules retained upstream of the ECC

ECC TARGET

- Target mover to have protons uniformly distributed on the emulsion films
- Design: shift along y axis during the spill
 - Shift along x axis in the inter-spill

2018 EXPOSURE PLAN

- Maximum track density in emulsion films: 10³/ mm²
- Emulsion surface available in July 2018: 10 m²
- ~20 ECC bricks exposed to proton beam with maximum intensity 10⁴ pot/spill
- Fully reconstructed charm-pairs: ~150

Full data taking after LS2: ~1000 fully reconstructed charm pairs

CONCLUSIONS

- SHIP is a fixed target experiment proposal al CERN SPS at the intensity frontier
- High energy beam dump: large variety of Hidden Sector portals explored
- Wide physics program with the Neutrino/Light Dark Matter Detector
- SHiP-charm measurement in July 2018

BACKUP SLIDES

HIDDEN SECTOR AND NEUTRINOS

Hidden Sector accessible to intensity frontier experiments via sufficiently light particles, coupled to the Standard Model sector via renormalizable "portals"

- SHiP: new fixed target facility at the intensity frontier to explore Hidden Sector
- Neutrino physics
- Light Dark Matter search

Several portals to the HS: scalar portal, neutrino portal, vector portal, SUSY...
All of these can be probed at the intensity frontier with SHiP!

STANDARD MODEL PORTALS

VECTOR PORTAL

- Kinetic mixing with the dark photon
- Possible dark matter candidate

Production of the dark photon at CERN SPS

- proton bremsstrahlung
- decay of pseudo-scalar mesons
- limits on mean life from BBN τ_{γ} <0.1s

Dark photons decay

- e+e-, µ+µ-,qq
- light dark matter $\chi \overline{\chi}$

HIGGS PORTAL

- Scalar singlet
- Mixing with the SM Higgs

$$\begin{pmatrix} H \\ h \end{pmatrix} = \begin{pmatrix} \cos \rho & -\sin \rho \\ \sin \rho & \cos \rho \end{pmatrix} \begin{pmatrix} \phi_0' \\ S' \end{pmatrix}$$

Main production mechanism

 Rare decay of B mediated by light scalar φ

Decay channels

e+e-, µ+µ-

STANDARD MODEL PORTALS

AXION PORTAL

- Pseudo-scalar particles (pNGB, Axions, ALPs)
- Produced by symmetry breaking at high mass scale F
- Interaction proportional to 1/F
- Mixing with SM particles proportional to m_x/F

Production mechanism

• Mixing with π^{o}

Decay channels

e+e-, μ+μ-, qq̄, γγ

NEUTRINO PORTAL

 Mixing with right-handed neutrino (details in the following slides)

SUSY PORTAL

... and possibly higher dimensional operators portals and **Super-Symmetric** portals

(light neutralino, light sgoldstino, ...)

NEUTRINO PORTAL

vMSM: v-Minimal Standard Model

3 additional Heavy Neutral Leptons: right-handed Majorana neutrinos

- **N**₁ : Dark Matter candidate
- N_{2,3}: give mass to neutrinos via see-saw mechanism, produce baryon asymmetry

T.Asaka, M.Shaposhnikov PL B620 (2005) 17 M.Shaposhnikov Nucl. Phys. B763 (2007) 49

N1: DARK MATTER CANDIDATE

- Weak coupling with other leptons
- Mass(N₁) ~ 10 KeV
- Enough stable to be a dark matter candidate

mixing v-N f H N_1 f \overline{f} \overline{v} \overline{v}

dominant process

subdominant radiative decay

GALACTIC HINTS

- Astr. Phys. J. 789 (2014) 13,
 Phys. Rev. Lett. 113 (2014) 251301
- Not identified line in the X-ray spectrum of Andromeda and Perseus galaxies (Eγ=3.5 keV)

N2,3: PRODUCTION AND DECAY

- Mass(N₂) ~ Mass(N₃) ~ few GeV
- Weak mixing with active neutrino
 - very long lifetimes wrt SM particles >10 μs
 - → flight length ~km

PRODUCTION

- Mixing with active neutrino
- Semi-leptonic decay

DECAY

- Br(N $\rightarrow \mu/e \pi$) ~ 0.1 50 %
- Br(N $\rightarrow \mu/e \rho$) ~ 0.5 20%
- Br(N $\rightarrow \nu \mu e$) ~ 1 10%

REQUIREMENTS

- High intensity beam dump experiment \Rightarrow K, D, B mesons
- Long-lived, weakly interacting particles require:
 - large decay volume
 - shielded from SM particles
- Spectrometer, Calorimeter, PIDS

SIGNAL SIGNATURE

- charged tracks forming an isolated vertex inside the fiducial volume acceptance
- Candidate momentum pointing back to the target
- "silent" VETO detectors