Measurement with SEM

R. og.

粘

 $\mathcal{R}^{(i)}$

T. Asada 2018/05/29 in Capri

A	HV	WD	det	mode	dwell	HFW	mag 🗖	spot	bias	+ 1 μm+
æ	6.00 kV	3.7 mm	CBS	A+B	10 µs	6.91 µm	60 013 x	1.5	0 V	AuPd

- Comparison of actual filament structure and Plasmon resonance
- This report uses eye check of SEM images and scanned data of Naples system, aiming the check of validity of parameters
- Machine learning is expected as prospect

Scanning Electron Microscope

Chemical department Help by Dr. Fabio Borbone

- depth of focus is very high, but penetration depth is several hundred nm
- the resolution depends on the width of electron beam and its diffusion

Requirement for SEM

- resolution < 10 nm/pix to see filament structure (width ~20 nm)
- $V_{acc} > 5$ kV for scattering of electron (see next page)
- conservative observation for structure destruction
 - at least 2 times sequential scanning gives same filament structure
 - $\rightarrow V_{acc} < 7 \text{ kV}$ pre-check shows 7 kV or more
- position matching for comparison to optical scan

SEM simulation by CASINO v3

Reported in Oct 2016

SEM Vacc = 5 \text{ keV}

energy deposit by scanning

Ag filament which depth is up to 200 nm is detectable, however 100~200 nm positions are worse contrast and resolution.

The contrast effect may be not so strong in our target; Carbon, energy < 100 keV (see nextpage)

problem of structure destruction

sequential scan show a destruction of filament structure in some condition I afraid that even 1st image gives destructed structures, so I required 2 sequential scan giving same structure for conservative observation $\rightarrow V_{acc} < 7 \text{ kV}$; $V_{acc} = 6 \text{ kV}$ considering requirement

condition check: surface coating

- Surface coating layer is need for electron conduction
- minimum coating is required to keep good contrast
- Carbon: transparent material, however thicker coating (20 nm) didn't contribute to film protection performance while resolution becomes worse
- Au/Pd: reflective material, however, very thin layer (4 nm) gives enough conductivity, and gives better contrast

 \rightarrow Au/Pd 4 nm is best

Carbon sputter

position matching

• global matching : optical marker by large crystal

- affine conversion using same corner markers give ~1um of RMS
- actual check of observing view position still keep few micron error

 \rightarrow enough for prediction, but local affine conversion is needed for dense ion sample

position matching

6810 -4140-4130 -4120 -4110 -4100 -4090 -4080-4070 -4060 -6820 -6830 -6840 -6850 -6860 -6870

event on opt corrdination

global affine: corner optical marks local affine: event matching inside view

currently local affine conversion needs manual treatment for view by view

→ pattern matching is needed for large statistics

[•] OPT \times global affine + local affine

Scan sequence

- maximum view size 55.1 x 36.8 um (fiducial area ~ circle of 40 um diameter)
- almost equivalent to optical view size (60 x 45 um)
 →view by view scan
- scan speed ~9 min/view
- position matching takes ~2 hour
- we are planning to automatic scan during night time for machine learning data

(ex. 18:00–9:00; 15 hour \rightarrow 100 images)

1 view matching

(C 60 keV)

SEM view 55.3 x 36.8 um

Napoli view 60 x 45 um

1 view matching / zoom

(C 60 keV)

manual check

using a free software ImageJ

direct analysis from image is currently difficult due to dust, contrast, and structure. As first step, I measured length and angle of tracks. Measurement is based on the thought of Feret's Diameter(maximum length of structure)

manual check result (C 100 keV)

manual check result (C 60 keV)

manual check result (C 30 keV)

manual check result (C 30 keV Vertical)

comparison to SRIM simulation (100 keV)

comparison to SRIM simulation (C 60 keV)

comparison to SRIM simulation (C 30 keV)

- longer tracks length than 150 nm is less correlated to bar-shift
- 30 keV (expected 1.6 grains) samples seem to have another behavior of bar-shift?

angle dependency of SEM / optical bar-phi

angles both have peak around 90 deg, but not linearly Stronger bar-shift still not have good correlation to SEM

One possible reason is definition of SEM manual measurement (effect of filament tail)

contrast comparison

measurement in Naples

detected event density ratio respect to 100 keV sample

Old measurement in Japan-PTS

detected event density ratio respect to 100 keV sample

Absolute value is not good due to dust, cluster event, etc. Japan has low contrast at lower energy tracks

P: detection efficiency of 1 crystal $1-\Sigma(P^n)$: possibility of no crystal detected

to be improved

- to measure and see the correspondence to optical image, Feret's Diameter is not good (filament tail looks too effective?)
- we should also measure other information (grain number, filament volume, etc.)
- measured samples has bad surface condition (it probably due to repeated scans) and cause problems on the kind of automatic analysis in the future
- comparison and connection to machine leaning
 - automatic image selection \rightarrow image processing, pattern matching
 - new clean samples

Au/Pd Sputtering sample (C100 vertical, after soaking to oil)

WD

3.7 mm

CBS

A+B

10 119

7 502 x

6.00 kV

very clean view dusts of measuring samples should be depend on repeated scanning...

10 µm

60keV

HFW 55.2 um

0 V

- we performed 1 by 1 matching comparison between optical and SEM images
- Current analysis (manual check of length and angle) shows some behavior but not best method
- several update is needed to perform machine learning