Calibration method for NEWSdm detector and Next experiment prospect

Umemoto

Calibration for understanding NIT

• Calibration should be done in actual experimental setup.

- NIT thickness is limited because of high vacuum pressure (~ 10 -7 Torr)
- only surface event

- gelatin coat for surface protection
- set in low temperature (<-15°C)

We need to check if Carbon ion sample is OK as a calibration sample.

Neutron measurement

We exposed neutron by Cf252 source at Iguchi lab in Nagoya university.

 \rightarrow possible to compare the result between surface ion track and nuclear recoil.

Neutron intensity = 2×10^4 neutron /sec in this time, Cf252 was used at room temperature. 2018/5/30

Cf252 neutron exposure

- Log
- NIT batch : FAN095gf (2017/12/22 production)
- Noodle wash 2017/12/23 pH 6.47, Conductivity 0.43 mS/cm
- Coat data 2018/01/05, Surface gel coat (by Naka san)
- HA 2018/01/29
- 2018/01/30 11:54 ... packing sample in Flab
- 2018/01/30 12:12:28 ... move Iguchi lab and start exposure
- * reference sample was also moved to Iguchi lab and came back to F lab after setting
- 2018/01/31 12:21:42 ... remove Cf252 source
- 2018/01/31 12:37:15 ... back Flab and start MAA development

How to scan

How to scan

Scan area = 3mm × 3mm

Several spots were scanned by PTS2 and the distance from Cf252 was changed.

event density of Cf252 sample

Manual check

- Ellipticity threshold = 2
- By manual check, we rejected proton track and obvious dust if there are over three grain , I think that it is a part of proton track.

2<u>2</u>00

tracking6

Expectation and scan data

- From Geant4 simulation by Naka-san(its very
- Neutron intensity = 2×10^4 neutron /sec
- C, N, O recoil
- track length 275 nm 1000 nm
- 1 view = $100 \times 100 \times 7.5$ (um3)

*Dust density from reference sample = 0.017/view

Distance	1.65 cm	2.15 cm
Expectation	0.178 /view	0.106 /view
Scan data	0.040 /view	0.024 /view
Data - dust	0.023 /view	0.007 /view
Detection efficiency	13 %	6%

Detection efficiency ~ 10 %

Condition of simulation

²⁵²Cf neutron energy

where T is 1.42 MeV

Paulo R.P. COELHO, Aucyone A. DA SILVA and Jose R. MAIORINO Nucl. Inst. Meth. A 280 (1989) 270-272

Number of Interacted events

Atomic number

data base

Н

Ν

 \cap

Expectation and scan data

- From Geant4 simulation by Naka-san(its very
- Neutron intensity = 2×10^4 neutron /sec
- C, N, O recoil
- track length 275 nm 1000 nm
- 1 view = $100 \times 100 \times 7.5$ (um3)

*Dust density from reference sample = 0.017/view

Distance	1.65 cm	2.15 cm
Expectation	0.178 /view	0.106 /view
Scan data	0.040 /view	0.024 /view
Data - dust	0.023 /view	0.007 /view
Detection efficiency	13 %	6%

Detection efficiency ~ 10 %

Angler distribution

• After manual check event

• We can detect recoil track angle which is similar to the simulation .

Future prospect

- To understand more detail, simulation with geometry will be done.
- Current PTS2 contrast is low. So we rescan it with higher contrast by taking camera exposure time longer.
 - → signal brightness, relation track length and ellipticity between ion track and recoil track will be compared.
- I would like to do neutron experiment at lower temperature.
- Plasmon analysis is also needed to check by using Cf252 sample.
- \rightarrow data was already taken by Napoli microscope in Feb2018.

Next experiment prospect

Development of low BG NIT

Event distribution \rightarrow we focus on the Ag conductivity in gel production 10⁵ F095 HAFix ex49 10⁴ event/ F095_HAMAA_ex44 Ag conductivity in gel production 120 10² AgBr(I) as core AgBr as shell 10 100 80 Ag Conductivity(mV) 10 4.5 5 ellipticity 60 0.5 2.5 3 3.5 4 1.5 2 5 FAN095gf 40 FAN096gf Event distribution 10⁶ 20 F096_HAFix_ex40 10⁴ 0 F096_HAMAA_ex48 10 20 30 40 50 60 0 10³ -20 Production Time(min) 10² 10

2018/5/

10-

0.5

1.5

2

2.5

3.5

4.5

5 ellipticity

We study gel production process for developing Dust free NIT

• Ag conductivity in gel production decides AgBr crystal formation.

 \rightarrow Surface state of AgBr crystal is changed by Ag conductivity.

- The relation between fog density and Ag conductivity in shell production process was studied by changing a concentration of NaBr solution
 - ightarrow final state of Ag conductivity

Ag conductivity and event density

Blue: 4<=minor<=6 and bin<=35 Elli>=1

Red : 4<=minor<=6 and bin<=35 Elli>=1.5

: Maa develop w/o any cut O : Fix only

Fog caused by MAA development is negligible

New experiment method

Fog background is suppressed by controlling Ag conductivity.

Then we make a new idea

"Signal disappearance method by fresh FIX treatment"

Character of fresh Fix

After fresh Fix treatment

Event distribution

Fresh Fix can delete Silver (fog, alpha track, nanoparticle and so on) but can not delete Dust

Concept of new experiment

Signal candidate is selected by elliptical fitting.

 \downarrow

Fresh Fix

 \downarrow

Only candidate events are rescanned and judged if they are deleted or not.

- We have to evaluate following
- How many signal and dust are vanished (or survived) after fresh Fix solution?

 ϵ (signal_delete) \rightarrow by using ion sample

 ϵ (noise_delete) \rightarrow by using Oday exposure sample

Signal

- HIMAC 290 MeV/n Carbon Ion beam
- FAN102gf

After fresh Fix treatment

discussion

Signal