Plan and discussion for data analysis and calibration study

Tatsuhiro NAKA Nagoya University

2018. 5. 28-29. NEWSdm collaboration system @ Capri, Italy

How do we analysis the dark matter sensitivity ?

Methodology

1. Making of ideal distribution for output parameter (e.g., elliptical parameter)

Comparison between ideal and real distribution
 ⇒ Definition of efficiency

3. Apply the efficiency to expected dark matter spectrum (to each dark matter mass)

How do we analysis the dark matter sensitivity ?

Realistic sensitivity taken into account current detection performance to the standard dark matter scenario.

* Surely, we can discuss about another dark matter model

In conclusion, understanding of detection performance is essentially important.

Calibration

- Recoil nuclei signal
 - ion-implant system
 - neutron source
- electron signal
 - gamma-ray induced electrons
 - beta-ray source

Underground calibration system

Same condition with dark matter run

- ✓ temperature
- ✓ emulsion film structure and treatment
- ✓ scanning analysis

1. Recoil nuclei calibration

	Advantage	Disadvantage			
Ion-implant system	 Monochromatic energy Directly detection of low-velocity ion [10 – 200 keV for Nagoya's machine] Uniform direction 	 ✓ Not-realistic environment [high vacuum condition (~ 1E-6 torr) ✓ Thin film ✓ Signal on only surface 			
Neutron source					
Cf neutron source	 Easy to use because of radioactive source Possible energy to make expected CNO recoil 	 ✓ Broad energy spectrum ✓ Gamma-ray emission (sometime advantage for discussion of γ/n separation) ✓ Not so high intensity 			
Neutron emission due to nuclear fission reaction	 Mono-energy neutron Mostly point-like source High intensity 	 ✓ Need to get the machine time (not flexible) ✓ Not so many experiment site 			

Cf-252 source

Paulo R.P. COELHO, Aucyone A. DA SILVA and Jose R. MAIORINO Nucl. Inst. Meth. A 280 (1989) 270-272

Elastic scattering Proton recoil range

2D recoil range [nm]

range [µm]

range [nm]

Expected event rate for case of Cf-252

0.958, 0.858, 0.0179 MeV

National Institute of Advanced Industrial Science and Technology ADVANCED INDUSTRIAL SCIENCE AND TECH

Neutron source due to nuclear fission

⁷Li (p, n)⁷Be \Rightarrow 565 keV neutron

Simulation result for very simple setup [w/o detail geometry]

2D range	Proton	CNO
No cut	30033	15291
0.2 – 0.5 μm	2034	4421
> 1µm	22953	-

of neutron : 100000
of interaction of NIT layer : 62516

Underground neutron measurement

Proton recoil detection for underground neutron

2. Electron background calibration

Just manual check and device condition is not difference for current one

M. Kimura et al., NIM A 845 (2017) 373 -377 https://doi.org/10.1016/j.nima.2016.06.052 We can expect strongly dependence of temperature for electron signal.

Low-temperature exposure is required.

- Radiation source possible to use in low-tem. environment
- Exposure system with cooling and sample mount system

Discussion : How to expose the radiation in cooling condition

- Exposure of γ-ray from outside of cooling system
 ⇒ It should be used higher energy gamma-ray
 (e.g., Co, Cs)
- 2. Insertion of radiation source stick
- 3. Exposure in the climatic chamber
- automation system to move the source in the chamber

Normalization to R distance of 1mm [exposure 2 min]

Normal temp.	D [μm]	Event density For the scan area	R [μm]	Average event density [/(10μm)^3] for R of 1mm
PN1	2248 – 2291	1.09 +- 0.1	3008-3041	10.0+- 0.9
PN2	952-2181	1.19 +- 0.1	2215-2959	7.9 +- 0.6

Average : 8.9 +- 1.1 [/($10\mu m$)³ for 1mm R correspondence]

-1510 °C temp.	D [µm]	Event density For the scan area	R [μm]	Event density [/(10µm)^3] for R of 1mm
PL1	1055 - 1223	1.72 +- 0.1	2261-2344	9.1+- 0.5
PL2	900-1318	1.64 +- 0.1	2193-2395	8.7 +- 0.5

mm

R

D

<u>Average : 8.9 +- 0.7 [/(10 μ m)³ for 1mm R correspondence]</u>

No effect for the sensitivity in this temperature !!

Temperature dependence result

Expected background ratio due to C-14

Comparison of background level

> 0.035 g data analysis

Expected value to see the excess with 95 %C.L. : 228

Expected C-14 background signal : < 63

$$2\sqrt{\lambda} = 63$$

 $\lambda = 992$ \longrightarrow $992/13000 = 1/13$

If current dust like event rejection will be 1/13, C-14 background excess may be observed.

⇒ this is very important to check our understanding of background

How do we make calibration system ?

 ✓ We should understand the detector performance using various method (e.g., radiation source, beam test)

- neutron source (e.g., Cf-252, nuclear fission facility)
- γ/β radiation source (Am-241, Co-60, Cs-133)
- Heavy ion beam
- \Rightarrow not only underground site

(e.g., Japan, LNGS surface and other Italian experimental site)

We will start to make the emulsion gel in underground

- It's required to evaluate the gel. produced in underground or surface lab.
- standard calibration system and method must be confirmed.

Summary of discussion points

Making the exposure system

- ✓ low-temperature condition
- ✓ some kind of radiation (e.g., neutron, gamma-ray)
- ✓ Good repeatability

Do we need to have additional experiment site to evaluate the emulsion gel. produced in underground lab on the surface lab ?

⇒small handling, development room and microscope system should be set for quickly evaluation .