Study for luminescence of fine-grained emulsion by charged particles

2018/05/30

T. Shiraishi @ NEWSdm meeting (Anacapri)

• Verification of emulsion luminescence excited by light

* Observed at Lq. N_2 temperature to decrease heat inactivation

• NIT (40nm crystal) luminescence spectrum

Luminescence of emulsions

- 1. Exposed white light
- 2. Light off
- 3. Luminescence

Observable luminescence time with the naked eye

- OPERA : ~1s
- NIT : ~7s

* In liquid N₂
** Camera sensitivity is automatically adjusted

Motivation 1 Combined analysis with track detection

- Locate the recorded track position in emulsion with mm accuracy
- Dust and fog don't luminescent
- Identify particle property from luminescence information (intensity, life time, spectrum, ...)

Motivation 2 Elucidation of detection mechanism for charged particles

	dE/dx in AgBr crystal	Number of e-h pairs created in 40nm AgBr*
5.48 MeV α -ray	300 (keV/μm)	2000 (/fs)
60 keV γ-ray	15 (keV/μm)	100 (/fs)
1kW pulse laser		0.001 (/fs)

*1 e-h pair/ 5.8 eV (K. A. Yamakawa, Phys. Rev. 82, 4(1951))

Charged particle create a huge number of e-h pairs locally at the same time (High illuminance condition)

Recombination is probably dominant \rightarrow Ag core creation probability decrease

Can we get more information about Ag core creation mechanism from luminescence?

Setup of $\alpha\text{-ray}$ and $\gamma\text{-ray}$ exposure

MPPC waveform

α -ray exposure

 γ -ray exposure

Detected number of photon

Detected number of photon (Background subtracted)

Number of emitted photons by α -ray and γ -ray are measured

Quenching factor ($\equiv N_{photon}/N_{e-h pairs}$) of AgBr crystal can be calculated

Estimation of energy deposition in AgBr crystal

- Face centered cubic lattice
- Whole density : 3.44 g/cm^3
- Fill rate of AgBr(I) : 41.5%
- Lattice constant : 75.5nm

Quenching Factor Calculation

Quenching Factor

Comparison with typical scintillators

				aliminary
	Ce : GAGG	Tl : Nal	Scintillating Fiber (BCF-60)	Prei NIT @ 88K (*Gelatin contained)
Density (g/cm ³)	6.63	3.67	1.2	3.44
Life time (ns)	88	230	7	~100 + ~10000
Deliquescent	no	yes	no	no
Number of photon (photon/MeV)	60000 (MIP)	40000 (MIP)	7100 (MIP)	~4000 (α 5.48MeV) ~18000 (γ 60keV) ~30000??? (MIP)
Energy resolution (% @ ¹³⁷ Cs-662keV)	6.3	5.6	???	???
Wavelength (nm)	520	415	530	570?

Not yet optimized!

We can change amount of lodine dope, size of AgBr crystal, ...17

Luminescence spectrum analysis (On going)

Optical fiber

- Trigger luminescence by MPPC inside of chamber 1.
- 2. Optical fiber guide the luminescence to outside of chamber
- 3. Monochromator selects the wavelength (~10nm width)
- PMT detects monochro-photon 4.

Inside of chamber

Luminescence spectrum analysis (On going)

 ✓ It is succeed to guide NIT luminescence to outside of chamber with high S/N

□ 6/12~ monochromator will be available

NIT luminescence spectrum by charged particles will be able to be observed

Summary

- This is the first observation of luminescence of emulsion by charged particles
- Measured the rate of contribution to luminescence of NIT excited by $\alpha\text{-ray}$ and $\gamma\text{-ray}$
 - Luminescence efficiency is very high at low temperature (may be comparable to plastic scintillator)

Plan

- Application for detector
 - Measure for nuclear recoil event and M.I.P.
 - Multi-channel readout
- Elucidation of detection mechanism for charged particles
 - Spectrum analysis
 - Change crystal property

Backup

To increase detection efficiency

- Use GaAs PMT
 - High quantum efficiency
- Use wide optical fiber (600 μ m \rightarrow 1mm)
- Increase RI rate
 - Do anyone have high rate RI (> 100Bq) which can be used at low temperature (77K) ?
- Light collection
 - It seems difficult to collect light to optical fiber (600µm, NA=0.22)

GaAs PMT

R1463 (multi-alkali PMT)

R943-02(GaAs PMT)

From Hamamatsu data sheet

Thermal noise rate

100cps @20°C

GaAs PMTを-20°Cぐらいに冷やしたい

スターリング冷凍機 SC-UD08

冷却性能

・(10cm)³の体積のアルミニウム(2.7kg)の場合
-20°Cから1°C下げるのに38s
-40°Cから
-60°Cから
66s

个10万円

※100W級の24V電源が必要 (Amazonで3000円ぐらい)

アダプタ

个5500円

治具は各自で作れば良い

TWINBIRD CORPORATION

Data connection

Averaged waveform

Dead time

<mark>赤:トリガー閾値2191、8µsの測定(8µs まではデッドタイムなし)</mark> 青:通常の測定(閾値2103、600ns)でデータをつなげたもの

Long data (time window 8µs)

α -ray simulation

α -ray simulation

 γ -ray simulation

γ -ray simulation

Thermoluminescence of NIT by charged particles

* ISO6400, shutter speed = 4 s (α), shutter speed = 8 s (β)

Fig.3 配位座標による励起状態からの輻射・非輻射遷移の説明図

Fig.4 液体窒素温度での AgBrI 粒子の再結合発光の機構図

日本写真学会誌2016 年79 巻3 号: 2-6 高田俊二、久下謙一

Triboluminescence

日本写真学会誌2016 年79 巻3 号: 2-6 高田俊二、久下謙一

Temperature rise due to phonon effect

Sensitivity recovery from Ag and Br tracks are promising.

	Total phonon energy in 40 nm [eV]	δT for 40 nm AgBr [K]	δT for 20 nm AgBr [K]
Ag (150 keV)	18600	58	234
Br (150 KeV)	13800	43	173
C (50 keV)	734	2.3	9.2
He (1000 keV)	15.9	0.050	0.20
H (1000 keV)	0.54	0.0017	0.067

$$\delta T = \frac{\delta E}{C_{\rm V}}$$

Cv ~ 3.5 x 10²⁰ eV/mol/K @ 93 K (51.8 J/mol/K)

* K. Kamran et al., J. Phys. D : Appl. Phys. 40(2007)869-873

Temperature rise due to phonon effect

Sensitivity recovery from Ag and Br tracks are promising.

		Total phonon energy in 40 nm [eV]	δT for 40 nm AgBr [K]
	Ag (150 keV)	18600	58
	Br (150 KeV)	13800	43
	C (50 keV)	734	2.3
V	He (1000 keV)	15.9	0.050
	H (1000 keV)	0.54	0.0017

$$\delta T = \frac{\delta E}{C_{\rm V}}$$

Average phonon energy in 40 nm AgBr layer by various particles (simulated by SRIM) Cv ~ 3.5 x 10²⁰ eV/mol/K @ 93 K (51.8 J/mol/K)

* K. Kamran et al., J. Phys. D : Appl. Phys. 40(2007)869-873

Calibration of MPPC break down voltage

44

REFERENCE DATA

Transmittance in NIT

Transmittance in NIT

Solid angle evaluation

MPPC fiducial area : 3mm*3mm

$$\frac{\Omega}{4\pi} = \frac{4\sin^{-1}(\sin^2\theta)}{4\pi} = 0.00315$$

$$\frac{\Omega}{4\pi} = 0.00315 \times 39.9 = 0.126$$

Solid angle evaluation

MPPC fiducial area : 3mm*3mm

$$\frac{\Omega}{4\pi} = \frac{4\sin^{-1}(\sin^2\theta)}{4\pi} = 0.0393$$

$$\frac{\Omega}{4\pi} = 0.0393 \times 4.10 = 0.161$$

Combined analysis with track detection

1. Direct detection by Photon detector

2. Use WLSF (Wavelength Shifting Fiber) to reduce readout channels

Cosmo-Z (ADC and ZYNQ board)

- ADC : 125MHz, 12bit, 8ch
- FPGA : ZYNQ (Xilinx FPGA)

not used

Thermal conductivity

	density (g/cm ³)	Specific heat (J/kg•K)	Thermal conductivity (W/m•K)
Air @ 0°C	0.001251	1005	0.0241
Air @ -100°C	0.001984	1009	0.0157
He gas @ 0°C	0.000179	5192	0.1442
Stainless @ 0°C	~8	~0.5	~0.2
Aluminum @ 0°C	2.70	0.88	1.95