NIT Sensitivity evaluation with 290MeV/n carbon

Nagoya University

tada

29,30 May ,2018 NEWSdm collaboration meeting @ Capli

The motivation for heavy ion beam analysis

1.Motivation For NEWSdm experiment

- \checkmark dE/dx is similar to C recoil
 - \rightarrow good to check the sensitivity test
 - \rightarrow fading stability
- ✓Very clear straight tracks
 - \rightarrow easy recognition

2.Motivation Application of NIT

- Analysis for high dE/dx cosmic ray events
- ✓ Application NIT for heavy ion collision experiment

NIT has high spatial resolution and very wide dynamic range of charge ID for high dE/dx particle.

Sensitivity check at low temperature

Motivation

M. Ki	mura	et	al.,	NIMA
(VCI2	<i>2016)</i>	20.	16	

High dE/dx particle	Low dE/dx particle
Recover sensitivity loss	Sensitivity decrease

Evaluate the sensitivity by dE/dx →We can determine best S/N temperature for NEWSdm experiment

Heavy Ion Beam Test

National Institute for Quantum and Radiological and Technology (NIRS) – HIMAC http://www.nirs.qst.go.jp/ENG/index.shtml

http://cerncourier.com/cws/article/cern/42717

Property of Heavy Ion Beam

Available ions at HIMAC :

		Energy	y loss		Nuclei	Energy [MeV/n]	Z/β
		SR	IM IN		Н	160	2.0
	C. (290 MeV	/n) ~ 2	28		He	150	4.1
			00		С	135	13
	Fe (SUU IVIEV	$(n) \sim 4$	00	11 May. 2018		290	9.5
	α -ray (5 Me	ev) ~ 1	50			350	8.9
						400	8.6
l	_ow-velocity C	ESP	NSP		Ne	230	17
	ion	[keV/µm]	[keV/µm			400	14
	50 keV	~150	~58		Si	135	30
	100 keV	~220	~40			490	19
•	ESP : electron sto	opping power			Ar	500	24
•	NSP : nuclear sto	opping power			Fe	200	47
We ca	n test the sir	nilar regior	of ener	y loss ^{7 July, 2018} —	→	500	35

Sample

Emulsion batch	Structure	Sensitization
FAN102gf	Slide glass base (2cc application)	Na2SO3 (standard)
FAN104gf	Slide glass base (2cc application	Na2SO3 (standard)

Target Temperature[°C]	Energy(MeV/n)	Cooling Method
20	290, 190(Bragg peak)	Room temperature
-20	190(Bragg peak)	Dry ice + ethanol
-68	290, 190(Bragg peak)	Dry ice + ethanol
-170	290, 190(Bragg peak)	Liquid N ₂

Naka san Slide @Univ.Chiba skype meeting

SRIM simulation to see the Bragg peak in the NIT layer

-170°C experiment

5.00E+01

.

Bragg Peak

room temperature

in -170°C exposure sample, \rightarrow not be seen 11

Analysis Method

Measure mean brightness of track by $10\,\mu\,m$

Result

Conclusion and future plan

• Fe 500MeV/n exposure(7,July 2018)

Application of NIT for high dE/dx particle search

- high dE/dx cosmic ray
- massive , long-lived and highly ionizing particles

Tracks detection by using Hough transformation

Image taking : PTS2 [wavelength: 300-500nm + x100 obj. lens with N.A. of 1.45]

Projection + Cluster definition by the Gaussian filter and background subtraction

Binarization (threshold40)

Line recognition by the Hough Transform

Z/β resolution

Nuclei	Energy(/n)
С	290MeV
Fe	500MeV
Ar	500MeV
Xe	150GeV
Pb	150GeV

$$\delta Z(Z,\beta) = \frac{\delta A_Z}{A_Z - A_{Z-1}}$$

$$\delta Z(Z,\beta) = \frac{1.469}{24.2 - 15.76} \times (26 - 18) \sim 1.4$$

18

Compare with other detector

	TD-1(CR39)	BARYOTRAK (CR39)	OPERA film	MUSIC (gas chamber)	NIT
Two tracks resolution	~100 μ m	$\sim 100 \mu$ m	5~10 <i>µ</i> m	~1cm	~0.5 <i>µ</i> m
Time resolution	×	×	×	2 <i>µ</i> s	×
Z/β resolution	<0.15	No data	No data	<0.2	<1.4
Z/β Dynamic range	5 <z <i="">β<16</z>	53<Ζ/ <i>β</i> <100	Z/β<6	7<Ζ/β<79	9 <z th="" β<82<=""></z>

highly spatial resolution wide dynamic range in charge resolution

Future Plan

- manuscript in preparation
- calculate the sensitivity for magnetic monopoles of NIT

back up

1.difference of HA sensitization

Type of sensitization	Consentraion	Tempareture[°C]	Soaking Time[min]
Na ₂ SO ₃ (standard)	5g/L	20.0	15
Triethanolamine	0.5wt%	20.0	6.5
Water (check of low pAg)	-	20.0	15, 6.5

2.difference between standard NIT and low noise NIT

Emulsion batch	Structure	Sensitization
FAN096gf	Slide glass base (2cc application)	Na2SO3 (standard)
FAN102gf	Slide glass base (2cc application)	Na2SO3 (standard)
FAN104gf	Slide glass base (2cc application	Na2SO3 (standard)

emulsion batch

- FAN096gf
- FAN102gf
- FAN104gf

Energy deposit in Nuclear emulsion

High dE/dx particleLow dE/dx particleRecover sensitivity lossSensitivity decrease

dE/dxごとの感度評価を行うことで、 NEWSdm実験として最もS/Nの高い温度を 決められる

Shiraishi san Slide