Keiko Nagao (Okayama University of Science)

Potential of NEWSdm Revealing DM Physics

NEWSdm collaboration meeting 30 May 2018

Outline

1. What can we say on physics?

2. An example -- velocity distribution

Any comment, question and suggestion are very welcome: nagao@dap.ous.ac.jp

What can we say on physics

D Ordinally direct detection

Recoil energy E_R Cross section < 10^{-46} cm² (SI), 10^{-38} cm² (SD)

XENON 1T (2018) Schumann

arXiv:1501.01200

3

What can we say on physics

NEWAGE (2010) DMTPC (2011)
DRIFT-Ild (2012)

DRIFT-fid (this wo

PICASSO (2012) SIMPLE (2011)

DMTPC PoS IDM2010 (2011) 042

 \Box Ordinally direct detection Recoil energy E_R Cross section $< 10^{-46}$ cm² \Box Directional detections + Direction of nuclear recoil $(+$ time)

DRIFT Phys. of the Dark Universe 9–10 (2015)

WIMP mass (GeV/c²)

100

1000

 10^{-1}

4

f

-dependent WIMP-proton

 $10+01$

 $10 - 01$

 $\overline{3}$ Spir

> NEWAGE Physics Letters B 686 (2010)

What can we say on physics

 \Box Ordinally direct detection Recoil energy E_R Cross section $< 10^{-46}$ cm² \Box Directional detections + Direction of nuclear recoil $(+$ time)

 \ldots μ =100 - Likelihood µ =100 - Counting only s cross section (cm²)
 10^{-4}
 10^{-4} 10^{-41} **NIPM-nucleus** 10^{-42} 10^2
WIPM mass (GeV/c²) 10

D NEWSdm

High sensitivity $\sim 10^{-42}$ cm² Wide mass range O(10-100)GeV – heavy DM SI int. (SD int. for Ag)

NEWSdm arXiv:1705.00613

Annual/daily modulation

DAMA/LIBRA phase-2 arXiv:1805.10486

SNOWMASS report (2013)

Annual/daily modulation Neutrino floor

Mayet et.al. Physics Reports 627 (2016) 1-49 mdm=6 GeV

Takaaki Kajita Proc Jpn Acad Ser B Phys Biol Sci. 2010; 86(4)

Annual/daily modulation

Velocity distribution of DM

D Observation \square N-body simulation \square Direct detection Drees, Shan (2007)

\square Directional direct detection

Morgan, Green, Spooner (2004) Host, Hansen (2007) KN, Yakabe, Naka, Miuchi (2017) … I discuss it later.

9

Annual/daily modulation Spin

$$
\hat{\mathcal{O}}_1 = 1_X 1_N
$$
\n
$$
\hat{\mathcal{O}}_3 = i\hat{\mathbf{S}}_N \cdot \left(\frac{\hat{\mathbf{q}}}{m_N} \times \hat{\mathbf{v}}^\perp\right) 1_X
$$
\n
$$
\hat{\mathcal{O}}_4 = \hat{\mathbf{S}}_X \cdot \hat{\mathbf{S}}_N
$$
\n
$$
\hat{\mathcal{O}}_5 = i\hat{\mathbf{S}}_X \cdot \left(\frac{\hat{\mathbf{q}}}{m_N} \times \hat{\mathbf{v}}^\perp\right) 1_N
$$
\n
$$
\hat{\mathcal{O}}_6 = \left(\hat{\mathbf{S}}_X \cdot \frac{\hat{\mathbf{q}}}{m_N}\right) \left(\hat{\mathbf{S}}_N \cdot \frac{\hat{\mathbf{q}}}{m_N}\right)
$$
\n
$$
\hat{\mathcal{O}}_7 = \hat{\mathbf{S}}_N \cdot \hat{\mathbf{v}}^\perp 1_X
$$
\n
$$
\hat{\mathcal{O}}_8 = \hat{\mathbf{S}}_X \cdot \hat{\mathbf{V}}^\perp 1_N
$$
\n
$$
\hat{\mathcal{O}}_9 = i\hat{\mathbf{S}}_X \cdot \frac{\hat{\mathbf{q}}}{m_N} 1_N
$$
\n
$$
\hat{\mathcal{O}}_{10} = i\hat{\mathbf{S}}_X \cdot \frac{\hat{\mathbf{q}}}{m_N} 1_N
$$
\n
$$
\hat{\mathcal{O}}_{11} = i\hat{\mathbf{S}}_X \cdot \frac{\hat{\mathbf{q}}}{m_N} 1_N
$$
\n
$$
\hat{\mathcal{O}}_{12} = \hat{\mathbf{S}}_X \cdot \left(\hat{\mathbf{S}}_N \times \hat{\mathbf{v}}^\perp\right)
$$
\n
$$
\hat{\mathcal{O}}_{13} = i\left(\hat{\mathbf{S}}_X \cdot \frac{\hat{\mathbf{q}}}{m_N}\right) \left(\hat{\mathbf{S}}_N \cdot \frac{\hat{\mathbf{q}}}{m_N}\right)
$$
\n
$$
\hat{\mathcal{O}}_{14} = i\left(\hat{\mathbf{S}}_X \cdot \frac{\hat{\mathbf{q}}}{m_N}\right) \left[\left(\hat{\mathbf{S}}_N \times \hat{\mathbf{v}}^\perp\right) \cdot \frac{\hat{\mathbf{q}}}{m
$$

TABLE I. Quantum mechanical operators defining the nonrelativistic effective theory of dark matter-nucleon interactions $\begin{bmatrix} 38 \\ 39 \end{bmatrix}$. The notation is the one introduced in PhysRevD.97.023007 Catena et.al (2017)

10

Annual/daily modulation Inelastic interaction

$$
v_{\min}(E_R) = \begin{cases} \sqrt{\frac{m_N E_R}{2\mu^2}} & \text{elastic} \\ \frac{1}{\sqrt{2m_N E_R}} \left(\frac{m_N E_R}{\mu} + \delta m\right), & \text{inelastic} \end{cases}
$$

$$
\cos\gamma_{\max}=\frac{v_{\rm esc}-v_{\rm min}}{v_e}
$$

Outline

2. An example -- velocity distribution

… talk is based on arXiv:1707.05523; KN, Yakabe, Naka, Miuchi (2017)

Velocity distribution 1

n Maxwell distribution $f(v) = \frac{1}{(\pi v_0^2)^{3/2}} e^{-(v+v_E)^2/v_0^2}$ $\frac{dR}{dE_R} = \frac{N_T \rho_0}{m_{\gamma}} \int^{v_{\rm max}} d\vec{v}~ f(\vec{v}) |\vec{v}| \frac{d\sigma(\vec{v})}{dE_R}$

 \triangleright commonly supposed in direct detections

 \triangleright isotropy also supposed

 \blacksquare How can we test it? cosmological observations directional detection

Velocity distribution 2 the Solar system

the Galaxy

Some N-body simulations suggest anisotropy

Ling, Nezri, Athanassoula & Teyssier (2009) cf. Kuhlen et al. (2012), David R. Law (2009) …

Numerical calculation

15

 \blacksquare Tangential velocity - anisotropy parameter r - r=0.25 is suggested by simulation **D** Goal: Discrimination - isotropic case (r=0) -- anisotropic case (r=0.3)

Monte Carlo simulation of scattering supposing $f(v)$ Direction (scattering angle) + Recoil energy Elastic scattering Mass m_{dm} =300 GeV for simplicity Target : Ag

Analysis

\blacksquare depends on resolutions of a detector

Energy resolution :OK Angular resolution :OK

 E_R -cos θ distribution

Energy resolution :NG Angular resolution :OK

cosθ histogram

Isotropic

 $\frac{1}{10}$ $r = 0.2$

 $r = 0.3$

 $r = 0.4$

 $5\cos\theta$ $r = 0.5$

 $rac{0}{2}$ $rac{0}{2}$ $r = 0.7$

 $\frac{0}{\cos \theta}$ $r = 0.8$

> $cos⁰$ $r = 1$

n Statistical test to examine the similarity of distributions.

 $\sqrt{\frac{1}{1-\frac$

 $\ddot{}$

- √ Kolmogorov–Smirnov test
- \times Likelihood analysis

Anisotropic

Chi squared test

Ethr is optimized to DM mass

#exp.=6*10^4 Ethr=50keV (Ag) E_R -cos θ

#exp.=2*10^4 Ethr=50keV (Ag) cosθ hist.

Summary

 \Box Possibility to explore dark matter physics through NEWSdm (large DM mass/high sensitivity/…) Annual/daily modulation Neutrino floor Velocity distribution of DM Spin Inelastic interaction

……

 \Box An example: velocity distribution of DM \sim O(10⁴) events required for discrimination (once m_{dm} is known).

BACKUP

Energy-angular distribution (light target)

 $Ethr = 0keV$

Energy-angular distribution (heavy target)

 $Ethr = 0keV$

Chi squared test of E_R -cos θ (light target) # exp.=6*10^3

Ethr=20keV (F)

 \checkmark If r=0.3, isotropic case (r=0) can be excluded at 90% C.L.

 \checkmark Energy threshold is a factor to clearly characterize the difference between r=0 and 0.3.

Chi squared test of E_R -cos θ (heavy target) $\qquad \qquad \text{``} \qquad$

Ethr=50keV (Ag)

 \checkmark Isotropic case can be rejected in heavy target case, but required event # is 6×10^4 (in light target case: 6×10^3).

 \checkmark Due to form factor effect, more signal number is required in heavy target case than light target case.

Directionality Histogram (heavy target)

Ethr=50keV (Ag)

 \checkmark Shape for r=0.3 is quite similar to that for r=1 in both case target F and Ag.

#exp.=5*10^3 Ethr=20keV (F)

\div Chi squared test (light target)

#exp.=6*10^4 Ethr=50keV (Ag)

reduced χ^2 reduced χ^2 reduced χ^2 10 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $10₁$ 10 šminėmi \sum_{α} chiada a chi-sana ann ann an a 1 $t_{\text{imp}} = 0$ $= 0.3$ ·=∙1 tmp tmp $10⁻¹$ $10⁻$ $10⁻$ $\overline{0}$ 0.2 0.2 direction 0.4 0.6 0.8 1 metal me
Texp 0.4 0.6 0.8 $\overline{0}$ 0.4 0.6 0.8 $r_{\rm exp}$ $r_{\rm exp}$

 \div Chi squared test (heavy target)

\rightarrow To discriminate the anisotropy, required event # are...

 $6 \times 10^{3}/6 \times 10^{4}$ (Energy-angular distribution)

 $5 \times 10^{3} / 2 \times 10^{4}$ (Directional histogram)

Event number for one bin is missed in test of energy-angular distribution.

$[ER + \theta]$ is worse than only $[\theta]$? \div Test efficiency also depends on ER, so the comparison is not so simple.

