

Nuclear Emulsions in the FOOT experiment

FOOT: **F**ragmentati**O**n **O**f **T**arget *An experiment for the measurement of nuclear fragmentation cross sections for Particle Therapy*

M.C. Montesi *(University of Napoli Federico II and INFN, Napoli) for the FOOT Collaboration*

> Second International Workshop on Nuclear Emulsions for Neutrino Studies and WIMP Search Anacapri 1 rt June 2018 1

 \triangleright Radiotherapy is based on the use of ionizing radiation to kill the cancer cells, by damaging the DNA chain.

Istituto Nazionale di Fisica Nucleare

\triangleright Charged Particle vs photons

- Peak of dose released at the end of the track, **allows sparing the normal tissue**
- \checkmark Beam penetration in tissue is function of the beam energy
- \checkmark Accurate conformal dose to tumor with Spread Out Bragg Peak
- \checkmark Greater biological effectiveness, increasing with the beam charge, well performing with radioresistant tumors

Nuclear fragmentation: target and beam

Proton Beam Charged particle

Istituto Nazionale di Fisica Nucleard

3

Target fragmentation

- Small range fragments (~tens of μm)
- Missing experimental data for heavy fragments (**He,**
- **C, Be, O, N)** having the greatest contribution to the dose
- Increase of biological damage (~10%) in the entrance channel (Grun 2013)

O٥ O

Measurements of nuclear fragmentation cross sections useful to develop a new generation of biologically oriented Treatment Planning Systems for proton and ion therapy

Beam and target fragmentation

- Fragments have the same velocity of the beam, but the lower mass allows longer range producing tail beyond the Bragg peak
- Scarce validation data for ¹²C clinical beam
- New beams (4 He and 16 O) to be study

Exp. Data (points) from Haettner et al, Rad. Prot. Dos. 2006 Simulation: A. Mairani PhD Thesis, 2007, Nuovo Cimento C, 31, 2008

Goals:

- o Fragments production cross sections (at level of 5%)
- o Fragments energy spectra dσ/dE (energy resolution ~1 MeV/u)
- \circ Charge ID (at the level of 2-3%)
- \circ Isotopic ID (at the level of 5%)
- \circ Data taking for beams at therapeutic energies and at high energy (space radioprotection):
	- o 200 MeV for protons
	- \circ 250 MeV/n (700 MeV/n) for He ions
	- \circ 350 MeV/n (700 MeV/n) for C ions
	- \circ 400 meV/n (700 MeV/n) for O ions
- \circ target simulating the human tissue (C, C₂H₄, 0)

Experimental strategy:

- \checkmark Inverse kinematic approach with double target
- Experimental apparatus: electronic detector and emulsion spectrometer

FOOT: Inverse kinematic approach (target fragmentation in proton therapy)

- Protons ω E_{kin}= 200 MeV (β ~0.6) on a "patient" (98% C, O, and H nucleus)
- can be replaced by $160, 12$ C ion beams (E_{kin} ~ 200 MeV/n β ~0.6) impinging on a target made of protons $(C \rightarrow H)$
- by applying the Lorentz transformation (well known β) it is possible to switch from the *lab. frame* to the *patient frame*

Requirements: the fragment direction must be well measured in the lab. frame to obtain the correct energy in the patient frame

7

FOOT: Double target

- \triangleright H target? Use twin targets made of C and polyethylene $(C_2H_4)_n$ and obtain the fragmentation results on H target from the difference
- \triangleright C \rightarrow H cross-section can be estimated by subtracting C \rightarrow C₂H₄ and C \rightarrow C cross-sections

$$
\frac{d\sigma}{dE_{kin}}(H) = \frac{1}{4} \left(\frac{d\sigma}{dE_{kin}} (C_2 H_4) - 2 \frac{d\sigma}{dE_{kin}}(C) \right)
$$

GANIL experimental data

Design Solution to develop a "table top" detector (< 2 m long):

- \cdot electronic detector optimized for fragments with Z ≥ 3 and angular acceptance \pm 10°
- ❖ emulsion spectrometer detecting light charged fragments at large angle (up to 70°)

FOOT Detector: Emulsion spectrometer

- \triangleright It will measure fragments as protons, deuterons, He and Li emitted within a wider angular aperture (up to 70°) with respect to heavier nuclei
- \triangleright Detector based on the concept of Emulsion Cloud Chamber – **ECC**
- \triangleright The measurement setup will integrate the ECC with the start counter and the beam monitor of the electronic detector

FOOT Detector: Emulsion Spectrometer

 \triangleright The emulsion technique has been already exploited to study the fragmentation of Carbon ions in polycarbonate: identification of the secondary nuclei produced by fragmentation of 400 MeV/n ¹²C can be achieved with high significance

FOOT Detector: Emulsion Spectrometer

> Other study: large angle fragmentation and momentum measurements of a 400 MeV/n ¹²C beam impinging on a composite target has been performed by using two ECC detectors to cover a range from 34° to 81° with respect to the beam axis

A. Alexandrov et al., JINST 12 (2017) P08013

Vertexing

• vertex detector

Section 2: made of emulsion films only

• charge identification for low Z fragments (H, He, Li)

Section 3: alternated layers of emulsions and passive materials (plastic and lead)

- Momentum measurement by range method and Multiple Coulomb Scattering (MCS)
- Isotopic identification

Istituto Nazionale di Fisica Nucleare

Alternate target layers of C or C_2H_4 (1 mm) and emulsion films

- Vertex detector and particle tracking
- Chamber thickness defined by the interaction length \rightarrow obtain a sufficiently high number of interactions
- \checkmark 20% of Carbon ions interacting in 3 cm Lexan (G. De Lellis, Nucl. Phys. A Vol. 853, 2011)
- \checkmark Total length \sim 30 cells = 39mm (30 films)

 \checkmark Emulsion films interleaved with passive layers (plastic and lead) (**30-50** passive layers)

FOOT: Emulsion Spectrometer – section 3

- \checkmark Dedicated to the momentum measurements by using the range method and the Multiple Coulomb Scattering (MCS)
- \checkmark Range Method: the kinetic energy of the particle is estimated on the basis of the range measurements (NIST data)
- \checkmark The MCS estimates the particles momuntum through the measurements of the position and the slope of the particles trajectory
- \checkmark Isotopic identification: by means two indipendent methods for the momuntum measurements

on

FOOT: Emulsion Spectrometer – test beam

- ‣ New nuclear emulsions, produced by Nagoya group, have been tested to assess the refreshing procedures and to define the correct working point for the particle identification (Z<3)
- ‣ LNS test beam with 80 MeV proton, deuterium, helium and carbon

 \checkmark Exposure of nuclear emulsion to calibrate the response at different ionizing beam (charge identification)

 \checkmark Exposure of two Emulsion Cloud Chambers for the isotopic identification

‣ Proton Radiotherapy Center in Trento test beam with 50, 200 and 80 MeV

H (80 MeV)

Expected $1/p\beta$: 0.0068 MeV⁻¹

FOOT: Emulsion Spectrometer – test beam ECC₁

300

250

200

- ‣ Test with data an algorithm for isotopic identification
- Exposure of two ECC to H and D ω 80 MeV/n
- ‣ ECC: 21 nuclear emulsions spaced by 20 stainless steel

layers (0.5 mm thick, $X_0 = 1.76$ cm)

- ‣ Preliminary estimation of **pβ** from OPERA algorithm [1] assuming the fitted track not to lose energy during its path (10 layers)
- ‣ Combination of **p** measurement by range and MCS (dependent on the mass) provides **isotope identification**

Expected $1/p\beta$: 0.0034 MeV⁻¹ \triangleright Measured 1/p β : 0.004±0.002 MeV⁻¹

Mean

RMS

 χ^2 / ndf

Constant

Siama

Prob

 H $(80 \text{ MeV}/u)$

 8.866 ± 0.04538

 2.917 ± 0.03209

37.99 / 36

 281.9 ± 5.5

 8.86 ± 0.05

 2.9 ± 0.0

0.3789

250F

200

150

Entries

 γ^2 / ndf

Constant

Prob

Mean

Sigma

 3.988 ± 0.03605

 1.464 ± 0.02549

66 24 / 20

7.39e-07

 $238.3 + 7.7$

 3.899 ± 0.037

 1.326 ± 0.028

FOOT: Emulsion Spectrometer – first run

- ‣ Planned for November 2018 at GSI
- ‣ He @ 700 MeV/n on C target
- ‣ ECC structure: almost 110 nuclear emulsions are needed
- \cdot The emulsion setup will be XY stage remotely controlled to avoid pile-up (particle density < 10 particles/mm²)
- ‣ The start counter and the beam monitor will provide a feedback (impact point and rate) to the stage movement

Conclusions

- Target fragmentation and beam are "hot" topics in Charged Particle Therapy
- \triangleright The FOOT detector will measure both target fragmentation in proton therapy and projectile fragmentation in charged particle therapy (He, C and O); energy of space radioprotection interest will be also investigated
- The FOOT experiment has been approved and funded by INFN for 2018-2021
- FOOT emulsion spectrometer data taking in November 2018 (GSI)
- Whole detector data taking foreseen in early 2020 (CNAO/Heidelberg/GSI)

Back-up slides

RBE: Relative Biological Effectiveness

In clinical practice protons RBE is a constant equal to 1.1, but experimental data show that RBE varies with Linear Energy Transfer (LET)!

1. Simultaneous determination of β and p respectively from the TOF and the magnetic spectrometer:

$$
A_1 = \frac{p}{U\beta c\gamma}
$$
 where $\gamma = \frac{1}{\sqrt{1-\beta^2}}$ and U = 931.5 MeV (Unified Atomic Mass)

2. Simultaneous determination of β and E_{kin} respectively from the TOF and the calorimeter:

$$
A_2 = \frac{K}{Uc^2(\gamma - 1)}
$$

3. Simultaneous determination of *p* and *Ekin* respectively from the magnetic spectrometer and the calorimeter:

$$
A_3 = \frac{p^2 c^2 - K}{2 U c^2 E_K}
$$

FOOT Conceptual Design Report

A. Alexandrov^a, G. Ambrosi^j S. Argiro^{b,m}, G. Battistoni^c, N. Belcari^{d,t}, S. Biondi^{e,u}, M. G. Bisogni^{d,t}, G. Bruni^e, S. Brambilla^c, N. Camarlinghi^{d,t}, P. Cerello^b, E. Ciarrocchi^{d,t}, A. Clozza^f, G. De Lellis^{a,s}, A. Di Crescenzo^{a,s}, M. Durante^g, M. Emde[†], R. Faccini^{h,o}, V. Ferrero^b, F. Ferroni^{h,o}, C. Finck^x, M. Francesconi^{d,t}, M. Franchini^{e,u}, L. Galli^d, M. Garbini^{*l,e,u*}, G. Giraudo^b, R. Hetzel[†], E. Iarocci^{h,o}, M. Ionica^j, K. Kanxheri^{j,w}, A. Lauria^{a,s}, C. La Tessa^{g,q}, M. Marafini^{*l,h*}, I. Mattei^c, R. Mirabelli^{h,o}, M. C. Montesi^{a,s}, M. C. Morone^{i,r}, M. Morrocchi^{d,t}, S. Muraro^d, L. Narici^{i,r}, R. Paramatti^h, A. Pastore^k, N. Pastrone^b, V. Patera^{h,o,l}, C. Peroni^{b,m}, M. Pullia^z, L. Ramello^{b,n}, V. Rosso^{d,t}, M. Rovituso⁹, C. Sanelli^f, A. Sarti^{o, f, l}, G. Sartorelli^{e, u}, O. Sato^p, A. Schiavi^{h, q}, C. Schuy^y E. Scifoni^g, A. Sciubba^{o,h,l}, M. Selvi^e, L. Servoli^j, M. Sitta^{b,n}, R. Spighi^e, E. Spiriti^f, G. Sportelli^{d,t}, A. Stahl[†], M. Testa^f, V. Tioukov^a, F. Tommasino^{9,q}, G. Traini^{o,h}, S. M. Valle^{c, v}, M. Vanstalle^x, M. Villa^{e, u}, U. Weber^y, A. Zoccoli^{e, u}

^a INFN, Sezione di Napoli, Italy ^b INFN, Sezione di Torino, Italy ^c INFN, Sezione di Milano, Italy ^d INFN, Sezione di Pisa, Italy ^e INFN, Sezione di Bologna, Italy ^f INFN, Laboratori Nazionali di Frascati, Italy ⁹ INFN, Trento Institute for Physics Applications, Italy ^h INFN, Sezione di Roma 1, Italy ^{*i*} INFN, Sezione di Roma 2, Italy ^j INFN, Sezione di Perugia, Italy k INFN, Sezione di Bari, Italy ^l Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Italy ^m Università di Torino, Italy ⁿ Università del Piemonte Orientale, Italy ^o Università di Roma "La Sapienza", Italy ^P Nagoya University, Japan ^q Università di Trento, Italy ^r Università di Roma "Tor Vergata", Italy ⁸ Università di Napoli "Federico II", Italy ^t Università di Pisa, Italy ^u Università di Bologna, Italy ^v Università di Milano, Italy ^w Università di Perugia, Italy ² Institut Pluridisciplinaire Hubert Curien (IPHC), Strasbourg, France ^y GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany ² CNAO, Italy [†] RWTH University, Aachen, Germany γ_A

FOOT Detector: upstream/target region

 \triangleright **Start counter**: thin plastic scintillator (250 μ m) start signal of the TOF **(100 ps)** \blacktriangleright counts primaries

• scintillator foil and 160 optical fibers grouped in four different arms

FOOT Detector: upstream/target region

- **Beam monitor**: twelve layers of wires, with three drift cells per layer
- \triangleright measure the direction and the position (spatial resolution ~140 μ m) of the impinging beam on the target
- \triangleright looks for fragmented primaries

FOOT Detector: magnetic spectrometer

Target and vertex tracker

FOOT Detector: plastic scintillator & calorimeter

BGO

Calorimeter

Two orthogonal layers of 20 plastic scintillator rods (2 cm large and 40 cm long for a total area of 40×40 cm², tickness 3 mm)

 \triangleright the stop signal for the TOF measurement

the measurement of the energy loss ∆E to identity the charge of the fragments

The calorimeter will be formed by about 360 BGO crystals (2x2 cm² transverse size) covering a circular surface of about 20 cm radius

 \triangleright fragments kinetic energy

Plastic scintillator detector prototype

FOOT Detector: redundant measurements The Z fragments can be reconstructed by the Bethe-Bloch equation and by measuring the energy deposited in the scintillator detector

$$
-\frac{dE}{dx} = \frac{\rho \cdot Z}{A} \frac{4\pi N_A m_e c^2}{M_U} \left(\frac{e^2}{4\pi \epsilon_0 m_e c^2}\right) \left(\frac{z^2}{\beta^2}\right) \ln\left(\frac{2m_e c^2 \beta^2}{I \cdot (1 - \beta^2)}\right) - \beta^2
$$

 \triangleright The reconstructed Z resolution ranges from 2% (16 O) to 5% (1 H)

 \triangleright The fragments mass A can be determined by:

- measuring β and p respectively from the TOF and the magnetic spectrometer
- measuring β and E_{kin} respectively from the TOF and the calorimeter
- measuring p and E_{kin} respectively from the magnetic spectrometer and the calorimeter
	- \triangleright Resolution for heavy fragments 4%

 $J\overline{L}$

FOOT Detector: simulation with FLUKA

Schematic 2D event display of a primary ¹⁶O ion interacting in a polyethylene target