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Why do we need ML?

» Our goal:

- Reducing the number of background events in
potentially signal data

» Statistical approach:
> limited by our physical understanding of the system
» Machine Learning approach:

- can discover complex correlations between
features, can be robust to insignificant variations in
case of high input dimensions.
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Algorithms performance metrics

» Algorithm’s output — Probability.

» Common metrics in ML: ROC-AUC score
Physically motivated metrics: Precision, Recall

True Positive

» Precision — —
True Positive+False Positive

True Positive

» Recall = — ;
True Positive+False Negative

» Use Precision and Recall to check the
performance of the final algorithm
- Need to select the probability threshold for the output.
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Training data

» C 100keV signal ~ 15000 tracks

» LNGS exposed background ~ 7000 tracks

» Gaussian fit parameters (8 polarizations):
> x,y — cluster center coordinates

> l,l, —major and minor axes of an elliptical fit
- ¢ — direction of the cluster

° n,, — area of the ellipse in pixels
> br — brightness of the cluster
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Tested approaches

» Boosted Decision Trees:

- Composition of small decision trees, next one
improves result of the previous one.

> Limited possibility to parallelize
» Random Forest:

- Composition of very deep trees, each one makes its
own decision, result is the average of probabilities.

- Highly parallelizable on CPUs

» Trees weakness:
> Performance strongly depends on the features choice.
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Preliminary results (Trees)

Trees classifiers ROC-AUC scores
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Preliminary results (Trees)
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» Random Forest with 10* trees test output and
physical scores
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Tested approaches

» Convolutional Neural Networks:
- Compared 2D and 3D architectures

- Compared Deep and Shallow Networks

- Working directly with the cluster images

- Requires large computational power (e.g. GPU)

- Larger datasets can be highly profitable for
performance
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Preliminary results (CNNs)

Conv1 validation ROC AUC Conv4 validation ROC AUC
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» Performance of Convl and Conv4 Networks
(named by the number of convolutional layers)
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Preliminary results (CNNs)

3D Convl validation ROC AUC 3D Conv4 validation ROC AUC
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» Training size dependence of 3D Convl and Conv4 Networks
(named by the number of convolutional layers)
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Preliminary results (CNNs)
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» 3D Conv4 validation output and physical scores
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Physical results

Precision 85.62% 99.01%
Recall 85.62% 95.41%

» Performance of the best algorithm in each class on
the test set using the optimal threshold.

> Precision lowers by background contamination.

> Recall lowers by loosing the signal samples.
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Conclusions and further plans

» Machine Learning can decrees background
contamination by orders of magnitude without
loosing any significant portion of signal.

» The physical motivation in the selection of network
architecture can give considerable improvement of
it’s performance.

» Enlarging the training set improves the networks’
performance.

» Further plans:

- Enlarge and diversify the dataset.
- Rotate the emulsions during scanning for isotropic signal.
- Try getting the direction of the track as a physical feature.
- Use images from color camera.
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