Machine Learning methods for NEWSdm data

Artem Golovatiuk

University of Kyiv (Ukraine)

Giovanni De Lellis,

Universita di Napoli (Italy),

Andrey Ustyuzhanin

Yandex (Russia)

Why do we need ML?

• Our goal:

- Reducing the number of background events in potentially signal data
- Statistical approach:
 - limited by our physical understanding of the system
- Machine Learning approach:
 - can discover complex correlations between features, can be robust to insignificant variations in case of high input dimensions.

Algorithms performance metrics

- Algorithm's output Probability.
- Common metrics in ML: ROC-AUC score Physically motivated metrics: Precision, Recall

• Precision = $\frac{True\ Positive}{True\ Positive + False\ Positive}$

True Positive+False Positive

- Recall = True Positive True Positive+False Negative
- Use Precision and Recall to check the performance of the final algorithm
 - Need to select the probability threshold for the output.

Training data

- C 100keV signal ~ 15000 tracks
- LNGS exposed background ~ 7000 tracks
- Gaussian fit parameters (8 polarizations):
 - x, y cluster center coordinates
 - l_x , l_y major and minor axes of an elliptical fit
 - $\circ \varphi$ direction of the cluster
 - n_{px} area of the ellipse in pixels
 - *br* brightness of the cluster
 - 56 features in total
- Cluster images:
 - 8 polarizations for each sample

Tested approaches

- Boosted Decision Trees:
 - Composition of small decision trees, next one improves result of the previous one.
 - Limited possibility to parallelize
- Random Forest:
 - Composition of very deep trees, each one makes its own decision, result is the average of probabilities.
 - Highly parallelizable on CPUs

Trees weakness:

Performance strongly depends on the features choice.

Preliminary results (Trees)

Preliminary results (Trees)

Random Forest with 10⁴ trees test output and physical scores

Tested approaches

- Convolutional Neural Networks:
 - Compared 2D and 3D architectures
 - Compared Deep and Shallow Networks
 - Working directly with the cluster images
 - Requires large computational power (e.g. GPU)
 - Larger datasets can be highly profitable for performance

Preliminary results (CNNs)

Performance of Conv1 and Conv4 Networks (named by the number of convolutional layers)

Preliminary results (CNNs)

 Training size dependence of 3D Conv1 and Conv4 Networks (named by the number of convolutional layers)

Preliminary results (CNNs)

> 3D Conv4 validation output and physical scores

Physical results

Score	Random Forest	3D Conv4 network
Precision	85.62%	99.01%
Recall	85.62%	95.41%

- Performance of the best algorithm in each class on the test set using the optimal threshold.
 - *Precision* lowers by background contamination.
 - *Recall* lowers by loosing the signal samples.

Conclusions and further plans

- Machine Learning can decrees background contamination by orders of magnitude without loosing any significant portion of signal.
- The physical motivation in the selection of network architecture can give considerable improvement of it's performance.
- Enlarging the training set improves the networks' performance.
- Further plans:

• Enlarge and diversify the dataset.

- Rotate the emulsions during scanning for isotropic signal.
- Try getting the direction of the track as a physical feature.

• Use images from color camera.