30 May 2018

Kimio Niwa 丹羽 公雄

befor OPERA after OPERA

PHOTOGRAPHIC EMULSION in the physics research

- .1896 A Becquerel found radioactivity
- by photograpfic plate , naked eye.

- •1910 S Kinoshita 木下季吉 studied
- the darkness by micro scope.
- darkness made by tracks
 - "discovery of alpha particle"

S KINOSHITA

1935 Powell developped electron sensitive gel G5 with ilford Co.
Kodak Co. 1947 pai/ μ/e detected in cosmic ray ,thick gel [pericle]

1970 both side coated emulsion plate introduced by Japanease physisists Niu, Koshiba, Fuji Co. Both side coated plate is 3D tracking device(x,y,tx,ty and D) with high resolution.

K. 1971 Niu discovered charm ptl. in cosmic ray by ECC

ECC

Sandwich structure by

- emulsion plate and absorber
- Absorber: iron and or lead etc.
- Emulsion plate: double side gel coated

• Emulsion Cloud Chamber

•Multiple layer of Spark chamber was used in Comic ray study. In 1950-1970 and Ue Uµ identification EXP.

After J/Ψ discovery 1974

Beuty particle found

Tau lepton found

Interest changed!

• From quark to neutrino

- 1990 KAMIOKANDE obtained atomospheric neutrino. Ue/Uµ separated
- up going neutrino number is missing compare to down going neutrino!
- Neutrino oscillate ? or sterile ?
- Neutrino oscillation was introduced 1962 by NKAGAWA et al.
- If oscillate, Neutrino is not massless !!
- tau neutrino is dark matter!! Harari 1998

•Our interest changed from quark to neutrino world!

- CHORUS 1990 started at CERN
- DONUT at FNAL tau neutrino search

DONUT

- Beam dump of FNAL TEVATRON
- 800GeV proton
- Detecter is ECC+muon spectrometer
- Hand made both side em coated plate
- Absorber is iron with thickness 1mm
- Size 50cm by 50 cm
- Automatic scanning and NET-SCAN was applied
- Track density $\sim 10^7$ /cm²

DONUT detecter 50kg ECC 4 units total 250kg

.Sandwich structure, emulsion plate and iron plate

From Quark to neutrino

- 1996 KAMIOKANDE new data mean
- atomospheric neutrino is misterius !!
- Looks like, neutrino is oscillating...
- Mixing angle is big, mass difference is small

1995 at FNAL I(Niwa) introduced the idea of Iong base line Uµ-UT appearance EXP by DONUT like100tonECC.start of opera assumed mixing angle 10⁻² using KAMIOKANDE(before SK)data

Neutrino mass may be not heavy,

- Ut dose not a candidate of darkmatter.
- Uµ-Ut dose not osc. in short distance.

CHRUS should be no solution! Long base line

Summary 1947 to 2005

- •1947 C.F.Powell ∏/µ/e [emulsion thickgel: pericle]
- electron sensitive gel G5

- .1971 K Niu Charm ptl by ECC Emulsion cloud chamber
- both side coated film : track position(x,y) and angle(tx,ty)
- manually scanning

- .1998(200) DONUT tau neutrino by ECC
- handmade emulsionfilm
- automatic scanning

1995 I(丹羽) introduced the idea of long base line

U_μ-U_T appearance EXP at FNAL by

- DONUT like100tonECC 700km fromFNAL.
- assumed mixing angle 10 ⁻²
- using KAMIOKANDE before SK

- Neutrino shold not be heavy,
- Ut dose not a candidate of darkmatter.
- •myu-neutrino dose not osc. in short distance.
- CHRUS should be no solution!
- Long base line should be done!!

Who intersted to Niwa talk ?

- •FNAL adam para
- MINOS leader S.Wojiki?
- ECC 100 ton ! Emulsion ?
- •At CERN: discussed with chorus p
- K.Winter, Dore, Roberta

•Next suporter!

- . L.Fore, Antonio, P strolin
- Seminar at rome univ. etc.

まとめ From chorus to opera proposal

- .1998 TAKAYAMA neutrino conference.
- SK group (Totsuka and Kajita) presented
- the beutiful result on atmospheric neutrinos
- Up going neutrino missing compare to down
- going neutrino. Mu neutrino disappeared !
- Strongly sugestted neutrino oscillation
- Sterile?

DONUT presented one neutau event detected

In ECC.

LOI : ANTONIO E assembled ! [Appearans] is indispensable to confirm the neutrino oscillation.

- Tau neurino detection is possible by ECC
- Big ECC detector construction is possible !
- Fuji Co. can make big volume emulsion film.
 Scanning is possible! 20cm²/h/sys

. DG Maiani suported

.2000 approved at CERN

- 1.5kton ECC sensitive to 3.10⁻³ mixing
 Maiani pushed OPERA
- Machine made emulsion film by FUJI Co.
- BAM, Lead plate, packing, Target tracker,
- Muon spectrometer, 1.5kton mounting.
- Brick handring(exchange) system,
- Automatic develop, CS, CS to Brick, etc.
- •
- By international collaboration work.

Opera progress after approval

.2007 OPERA detector constructed at Grnsasso

- CNGS(neutrino beam from CERN)constructed
- •Neutrino exposure 2008-2014
- .2008/5 The first event (first light) detected in ECC
- under microscop
- .20010 the first tau neutrino candidate
- .20012 clear tau neutrino (leptonic tau) detected
- .20015 5 tau neutrino events
- .20018 final analysis 6 sigma

Opera summary

- .1995 idea at fnal (DONUT meeting)
- •OPERA detecter constructed in Gransasso.
- •OPERA/CNGS construction 2000-2007
- •Exposure 2008-2014
- .2008 dec. first neutrino event is located.
- •Nµ-Nt 5 events 6-sigma
- Technological out put, useful for future
- Big volume emulsion film handling
- High speed scanning machine with 1m²/h

教訓

- .Thanks INFN for monay short of "japan"
- to organize international collabolation
- Trouble: over light velocity
- Good lesson to scientist

- It is important to open OPERA data
- Big data handling, application soft.
- for out side researcher and education .

教訓

- .Thanks INFN for monay short of "japan"
- to organize international collabolation
- Trouble: over light velocity
- Good lesson to scientist

- It is important to open OPERA data
- Big data handling, application soft.
- for out side researcher and education .

Trouble : Neutrino velocity Money short

friends passed away G Romano Giacomelli Tolun(ankara) Niu(japan) Kanazawa Fuji co. Guy Vanbeek(burussel)

HTS scanning speed 1m2/h

.HTS の写真

After opera [future]

.We maneged big volume emulsion film

- by low cost $1m^2 100 \text{ ER}(\text{big volume only})$
- Other device are more expensive.
- .We have big scanning power
 - 1m²/h or more ~10m²/h in future

Emulsion future

- •Emulsion is the long life detecter in physics
- Start 1896
- Used in research and business..
- Very good interaction with industrial technology.
- . Emulsion is not behind the times,
- rather ahead of the times.

•

OPERA else

- .Gamma ray star AOKI
- balloon , $1m^2$, $10 m^2$ Ey>10MeV,,,1GeV
- Monopol, antiproton ,quark,
- Under ground ,airple,balloon,
- µon radiography
- blast furnace / pyramid /etc
- check the status without distroy
- •WIMPS search ?, super fine AgBr crystal

•Double hyper nuclus analyzed $\Lambda\Lambda$ force,

Nuclear reacter F.Reines Ve detecter:liquid scintillater+PMTs

BNL 14/28 GeV beam dump Lederman V_µ detecter:multilayer spark chambers

FNAL 800GeV beam dump DONUT Vt

$\begin{array}{cccccccc} & 4^{th} & Neutrino \\ e & \mu & \tau & X_4 & ? \\ V_e & V_\mu & V_\tau & V_4 & ? \end{array}$

rejected Mass (v4) \leq 50GeV LRP exp Mass () \leq 100GeV LHC

try mass $100 \text{GeV} \le .. \le 7 \text{TeV}$

Search for very heavy neutrino V4

• One of dark matter WIMP candidate

LEP killed leight neutrino U₄ mass<50GeV

- LHC no signal on heavy mass neutrino
- DAMA result is not killed

mass~50GeV??

LHC

7TeV X 7TeV

•On the ground above CMS/ATLAS •Collision point to the surface≈ 100m

Detecter area 100m X 100m

 Detect the muon position and impact parameter and momentum

Beam dump emulsion exp

name	Target mass	physics	date year
DONUT	100kg	VT discover	2000
FNAL tevatron			
•			
•OPERA	1000 ton	$V\mu \ \rightarrow \ V\tau$	2017
.SPS		appearance	
•New	1 Mega ton	V 4	?
• LHC			

Experiment	Numbr of proton int	Target mass	Energy cross section
DONUT	10 ¹⁸	250kg	20Gev
tau neutrin	0		(800GeV)

present situation LHC is wonderfull !

LHC beam colliding position is under ground depth 100m

Put the detecter on the ground

above ATLAS and/or CMS

detecter size 100m*100m

ECC muon detecter

- Posion and angle of muon
- impact parameter analysis
- Momentum measurement
- multiple scattering

- Iron plate and emulsion film ~50 layers
- muon momentum (Tev muon)
- iron plate thickness ~0.5cm 40kg
- .Unit ECC weightis ~2 ton

possible ? SCANNING

Operanewunit size 10*cm*10cm*0.6cm100*100*50 layermag spectrometer +scat.Scatterng only. Unit number 100000 units10000 units. Scanning power 100cm²/h10000cm²/h. Only selectedall

コスト how mach??

- Ecc 10000 units cost
- Ecc cost film 2万/m² 100万円10⁴ euro/unit
- Total detecter cost 10⁸ euro 100億円

- 仲間 中国?
 - (HP Kamioka:: korea chaina)

・宇宙線研究 高エネルギーµフラックス