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Problem statement

Problem: identify all showers in the ECC(Emulsion Cloud Chamber) brick and for each shower re-

construct its energy, initial position and direction.

Setup: ∼ 3− 5 · 106 background basetracks and 50-200 showers in one ECC brick.

Metrics:

Energy resolution: ∆E/E

Quality of initial position reconstruction: MAE over xstart, ystart, zstart
Quality of direction reconstruction: MAE over θx, θy
Ratio of recovered showers: recovered showers / total showers

Track classification(indirectmetric): ROC-AUC and PR-AUC
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Data

Each basetrack from ECC brick is described by 6 variables: x, y, z, θx, θy,χ2, i.e. position, direction and fit

quality.
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Brick example.
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Previous works

› ‘Search for TauNeutrinos in the τ → eDecay Channel in the OPERA Experiment’ B. Hosseini

– only one shower with known origin;

– σ(∆E/E) = 0.20

› ‘Machine-Learning techniques for electro-magnetic showers identification in OPERA datasets’

A.Ustyuzhanin, S. Shirobokov, V. Belavin, A. Filatov

– only one shower with unknown origin;

– σ(∆E/E) ∼ 0.27
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›

Methodology
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Pipeline
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Pipeline (continued)
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›

Cleanup
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Preprocessing
In preprocessing I am building graphwith nodes represented by basetracks. Two nodes(basetracks) are

connectedwith the edge if and only if:

› between them less than 3 layers;

› one of the basetracks lies in the cone of 16 (mrad) with origin in another basetrack;

› integrated distance(blue area on the pic) between tracks less than threshold.
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Feature engineering and XGBoost cleanup

For cleaning XGBoost is applied.

For each basetrack 63 features have been constructed. 3 original basetrack features:

› θx,y andχ2

60 pairwise basetrack features for 4 nearest(with lowest integrated distance) neighbors:

› ∆θx,y and∆x,∆y,∆z between tracks;

› IPx,y for both tracks;

› integrated distance;

› θx,y,χ2 of neighbor;

› energy-like feature and likelihood induced frommultiple scattering theory(details in backup slide).

13 / 34



XGBoost cleanup

Figure 1: ROC-AUC=0.994 Figure 2: PR-AUC=0.97
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›

Clusterization
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Modified HDBSCAN. Algorithm

Step 1. Calculate all pairwise distances.

I.e. calculate all d(i, j). In our case, d(basetracki,basetracki) = integrated distance from prepro-

cessing step;

Step 2. Definemutual reachability distance with parameter ‘k’.

dmreach−k = max{corek(basetracki), corek(basetrackj), d(basetracki,basetracki)}.
Where corek(basetracki) is a distance from basetracki to the k-nearest neighbor.

At this point you have complete graph of distances.
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Modified HDBSCAN. Algorithm
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Modified HDBSCAN. Algorithm

Step 3. Constructminimum spanning tree, i.e. tree with the lowest sum of edges weights.
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Modified HDBSCAN. Algorithm

Step 4. Iteratively delete edges with the highest weight.
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Modified HDBSCAN. Algorithm

Step 5. Choose cut level.
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Modified HDBSCAN for shower extraction. Results.

Modification to original algorithm:

› physicallymotivated stop criteria;

› modified core distance calculation.

Number of showers in brick 50 100 150 200

Ratio of survived showers 93 % 93 % 91 % 88 %

Ratio of stuck showers 3 % 3 % 3 % 3 %

Ratio of broken showers 1 % 0 % 1 % 2 %

Ratio of lost showers 3 % 4% 5 % 7 %
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›

Showers separation withMPNN
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Graph terminology

› V = {vi}Ni=0 – set of vertices with:

– associated features: xi ∈ RD1

– hidden state: hi ∈ RH1

› E ⊂ 2V & ∀e ∈ e ∈ E (|e| = 2) – set of edges with:

– associated features: xij ∈ RD1

– hidden state: hij ∈ RH1

› G(V, E) = ⟨V; E⟩ – graph;
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MPNN
MPNN stands forMessage Passing Neural Networks.

The core idea ofMPNN is passing ‘messages’ from node to node and updating states of nodes ac-

cordingly to received ‘messages’, thus allowing taking into account both structural-wise and node-

wise information.

There could be several steps of passing ‘messages’ and nodes updates. To distinguish themwe are

going to use upper-score symbol t, t ∈ {1, 2, ..., T}
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MPNN(continued)

So, in a nutshell to defineMPNNone have to define three operations:

› message passing: mt
ij = ftij(h

t
i , h

t
j , h

t
ij);

› message aggregation: Mt
j = gtj

(
{mt

ij}i
)
;

› node update: ht+1
i = Ut

i (M
t
j , h

t
i ).

Usually you also want to define readout function tomake predictions:

› over single node: Ri(hTi );

› or over whole graph: Ri
(
{hTi }i

)
.

All functions could be handcrafted or parametrized by neural network. In latter case it is possible to

learn parameters through backpropagation.
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MPNN for shower separation

To trainMPNN for shower splitting I compare two loss functions.

Traditional siamese loss or contrastive loss:

L(xi, xj) = (1− Y)D2
W(xi, xj) + Ymax(0,m− DW(xi, xj))

2

DW(xi, xj) = ||xi − xj||2

Y = 0when both tracks belong to the same shower and Y = 1 otherwise.

After training thismodel we can use it to split stuck together showers or as an additional distance for

HDBSCAN algorithm.
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MPNN for shower separation(continued)

Batch centered loss:

› For each class robustly find its center: centeri = median(xi)

› similarity loss: Lsimilarity = (centeri − xi)2

› contrastive loss: Lcontrast = max(0,m− |centeri − centerj|)2

Advantages in comparisonwith siamese loss:

› ∼ O(N) operations;

› no need for sophisticated sampling strategies;

› more robust to outliers(in theory).
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MPNN for shower separation(continued)

ExperimentswithMPNNstill inprogressdue tocomputational complexityofMPNNsonbiggraphs.
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›

Shower parameters estimation
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Parameter estimation with linearmodels

Features:

› number of selected basetracks;

› spatial parameters of shower, i.e. statistics over x, y, z, θx, θy.

For estimation we use Theil-Sen linear estimator which ismore robust to outliers than least square

estimator.
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Parameter estimation with linearmodels

Result on test data for different number of showers in brick:

Number of showers in brick 50 100 150 200

σ
(
∆E
E

)
0.28 0.27 0.28 0.28

MAE(x, y) 0.18 (mm) 0.23 (mm) 0.23(mm) 0.22 (mm)

MAE(z) 1(mm) 1.2(mm) 1 (mm) 1.1 (mm)

MAE(tx, ty) 13(mrad) 14(mrad) 15(mrad) 13(mrad)
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Summary

› works for∼ 50− 200 showers in a brick;

› no a priori information;

› ∼ 90% of showers recovered;

Future plans:

› optimizeMPNN for large graphs;

› try unsupervised losses forMPNN;

› generalize HDBSCAN on directed graphs;

› try PointNet/PointNet++(NNs for point cloud segmentation) on this task.
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›

Backup
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Energy-like feature

FromMolier’s theory ofmultiple scattering one can derive following probability distributions on track

directions and positions:

P(z, θ) =
2θ

⟨θ2⟩
exp

(
− θ2

⟨θ2⟩

)
, ⟨θ2⟩ = θ2s z =

(
Es
βcp

)2 z
X0

Q(z, θx) =
1√

2πσθx

exp

(
− θ2x
2σ2

θx

)
, σ2

θx =
⟨θ2⟩
2

S(z, x) =
1√
2πσx

exp

(
− θ2x
2σ2

x

)
, σ2

x =
θ2s z

3

6

Using this distributions we can estimate energy(E ≈ cp) for all pairs of tracks and it’s likelihood.
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