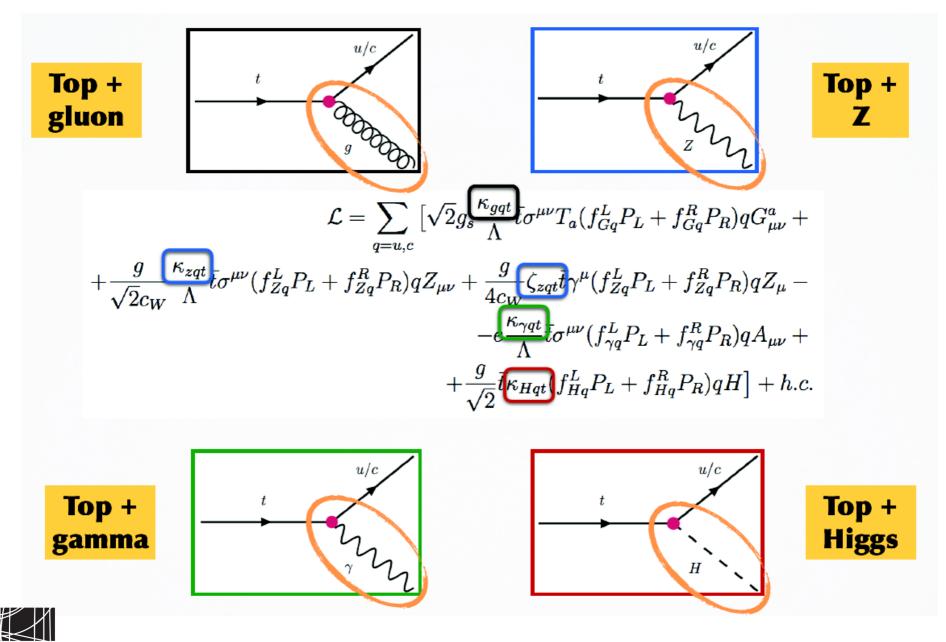
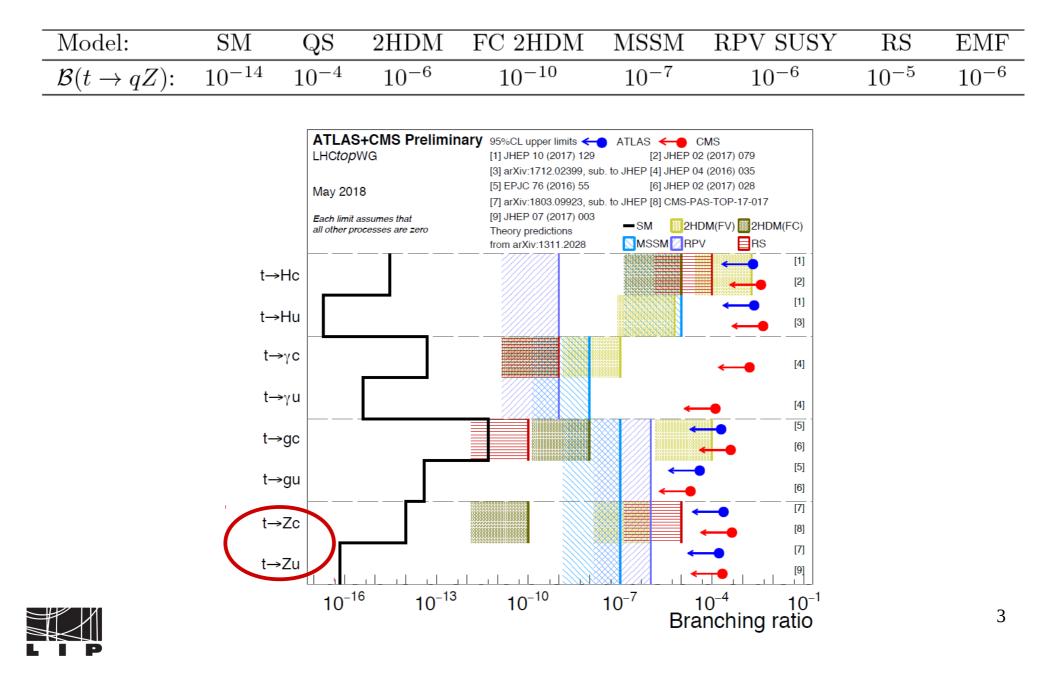

Comparison of the ATLAS and CMS FCNC t → **Zq searches**

Nuno Castro (ATLAS), Jorgen D'Hondt (CMS)

LPCC

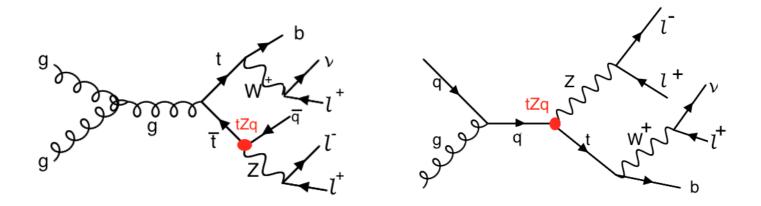

LHC TOP WG meeting, 15th May 2018

IF Fundação para a Ciência e a Tecnologia INVESTIGADOR FCT


COMPETE

IF/00050/2013, CERN/FIS-NUC/0005/2015

FCNCs at the top sector



FCNCs at the top sector

Search for t \rightarrow qZ at the LHC (ATLAS and CMS)

• The tZq vertex can be probed both in $t\overline{t}$ events (where t \rightarrow qZ) and tZ production via FCNC

- The present talk will focus on the comparison of the ATLAS and CMS results at 13 TeV:
 - ATLAS arXiv:1803.099923 [hep-ex] \rightarrow decay
 - CMS PAS TOP-17-017 \rightarrow production+decay

Search for $t \rightarrow qZ$ at the LHC (ATLAS and CMS)

• Signal generation:

ATLAS	CMS
 MG5_aMC@NLO (NLO) 	 MG5_aMC@NLO (LO)
• Top FCNC UFO model (http://feynrules.irmp.ucl.ac.be/wiki/TopFCNC)	 Private implementation of the lagrangian in Feynrules / UFO
 Λ = 1 TeV only one eff. operator coef. different from 0 (choice equivalent to a tensor LH coupling) 	 Tensor RH coupling

Search for $t \rightarrow qZ$ at the LHC (ATLAS and CMS)

• Trigger and object definitions

	ATLAS	CMS
triggers	 Single lepton (e ou μ) triggers 	 Combination of single, dilepton and trilepton triggers
electrons	• $E_{T} > 15 \text{ GeV}$ • $ \eta < 2.5$	 E_T > 35 GeV η < 2.1
muons	 p_T > 15 GeV η < 2.5 	 p_T > 30 GeV η < 2.4
Jets (∆R=0.4)	 p_T > 25 GeV η < 2.5 	 p_T > 30 GeV η < 2.4
B-tag eff.	• 77 %	• 83 %

Analysis strategy

- Basic selection
 - ATLAS considers only the decay channel
 - CMS considers both production and decay channels

ATLAS	CMS
 Exactly 3 leptons (at least 1 OSSF pair) 	 Exactly 3 leptons (at least 1 OSSF pair)
At least 2 jets	 Exactly 1 jet (ST) 2 or 3 jets (TT)
 Exactly 1 b-tagged jet 	Exactly 1 b-tagged jet (ST)At least 1 b-tagged jet (TT)
• MET > 20 GeV	• M _T (W) < 300 GeV
• Z candidate within 15 GeV of m_z	• Z candidate within 7.5 GeV of m_z

Analysis strategy

• Signal and control regions used in the fit:

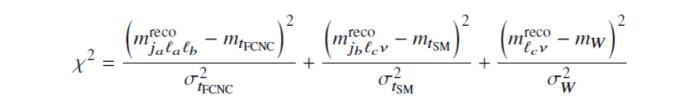
		:					
	Selection	$t\bar{t}Z$ CR	$WZ \ CR$	$ZZ \ CR$	Non-prompt lepton CR0 (CR1)	SR	
	No. leptons	3	3	4	3	3	
	OSSF	Yes	Yes	Yes	Yes	Yes	
	$ m_{\ell\ell}^{ m reco} - 91.2 ~{ m GeV} $	$< 15 { m ~GeV}$	$< 15 { m ~GeV}$	$< 15 { m ~GeV}$	$> 15 { m ~GeV}$	$< 15 { m ~GeV}$	
	No. jets	≥ 4	≥ 2	≥ 1	≥ 2	≥ 2	
AS	No. b -tagged jets	2	0	0	0(1)	1	
	$E_{\mathrm{T}}^{\mathrm{miss}}$	$> 20 { m GeV}$	$> 40 { m GeV}$	$> 20 { m ~GeV}$	$> 20 { m GeV}$	$> 20 { m GeV}$	
	$m_{ ext{T}}^{ar{\ell} ar{ u}}$		$> 50 { m ~GeV}$	-	-	-	
	$ m_{\ell\nu}^{ m reco} - 80.4 ~{ m GeV} $	-	-	-	-	$< 30 { m ~GeV}$	
	$ m_{j\ell\nu}^{ m reco} - 172.5 { m GeV} $	-	-	-	-	$< 40 { m ~GeV}$	
	$ m_{j\ell\ell}^{ m reco} - 172.5 ~{ m GeV} $	-	-	-	-	$< 40 { m ~GeV}$	

	WZ	single top	top quark	single top	top quark		
	:	quark	pair	quark	pair		
	control region	signal region	signal region	control region	control region		
	(WZCR)	(STSR)	(TTSR)	(STCR)	(TTCR)		
Number of jets	$\geq 1, \leq 3$	1	\geq 2, \leq 3	1	\geq 2, \leq 3		
Number of b jets	0	1	≥ 1	1	≥ 1		
$ M(Z_{\rm reco}) - M_Z $	Yes	Yes	Yes	No	No		
< 7.5 GeV							
		G					

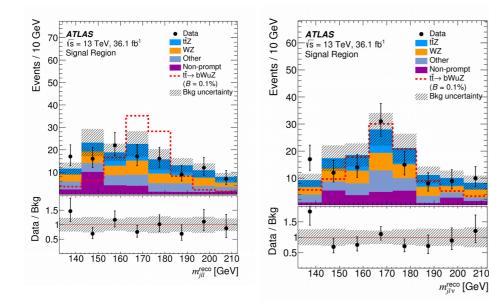
ATLAS

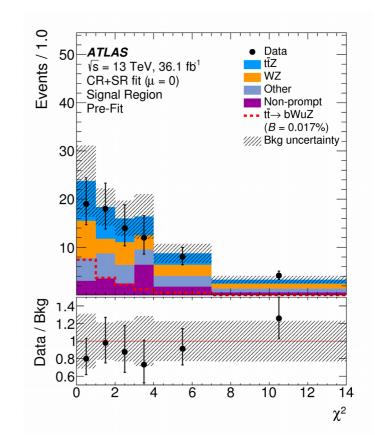
Analysis strategy

- Evaluation of normalization of the non-prompt leptons (NPL) background (shape from MC templates)
 - ATLAS
 - Normalization factors from dedicated regions


Z+jets a	and DY	t ī	
"Light" region $-e$	"Light" region – μ	"Heavy" region $-e$	"Heavy" region – μ
<i>eee</i> or $e\mu\mu$, OSSF	$\mu\mu\mu$ or μee , OSSF	$e\mu\mu$, OS no OSSF	$\mu ee, OS no OSSF$
$ m_{\ell\ell} - 91.2 \text{ GeV} < 15 \text{ GeV}$	$ m_{\ell\ell} - 91.2 \text{ GeV} < 15 \text{ GeV}$		
≥ 1 jet	≥ 1 jet	≥ 2 jet	≥ 2 jet
$E_{\rm T}^{\rm miss} < 40 {\rm GeV}$	$E_{\rm T}^{\rm miss} < 40 {\rm GeV}$		
$m_{\rm T} \leq 50 { m ~GeV}$	$m_{\mathrm{T}} \leq 50 \ \mathrm{GeV}$		

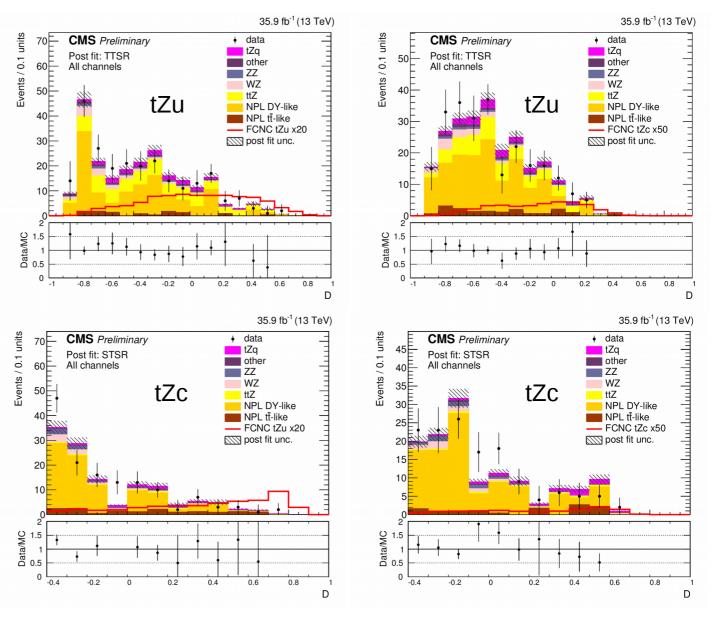
- CMS
 - NPL normalization from $t\overline{t}$ derived using TTCR and STCR
 - NPL normalization from *Z*+jets and DY derived using WZCR




Event reconstruction / MVA

• ATLAS uses a χ^2 method for event reconstruction:

which is used as fitting variable

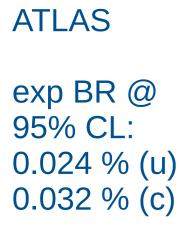


Event reconstruction / MVA

Systematic uncertainties

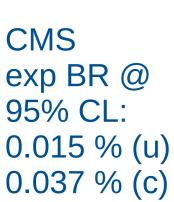
• ATLAS

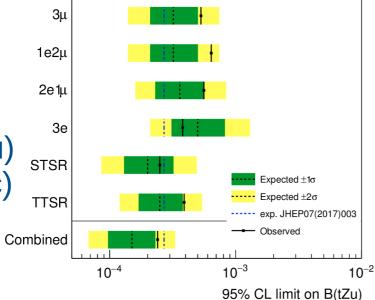
Pre-fit	$t\bar{t}Z$ CR	$WZ \ CR$	$ZZ \ CR$	Non-prompt	Non-prompt	S	R
Source				lepton CR0	lepton $CR1$		
	B [%]	B [%]	B [%]	B [%]	B [%]	B [%]	S [%]
Event modelling	29	40	13	24	40	30	5
Leptons	2.1	2.4	3.0	2.6	2.9	2.6	1.9
Jets	6	8	15	10	4	9	4
b-tagging	7	1.5	0.6	2.3	3.0	5	3.4
$E_{\mathrm{T}}^{\mathrm{miss}}$	0.4	4	2.6	3.0	0.8	5	1.4
Non-prompt leptons	1.1	1.3		12	15	6	
Pile-up	5	1.3	5	3.5	1.8	4	2.3
Luminosity	2.0	2.0	2.1	1.3	0.8	1.7	2.1
Post-fit	$t\bar{t}Z$ CR	$WZ \ CR$	$ZZ \ CR$	Non-prompt	Non-prompt	S	R
Source				lepton CR0	lepton CR1		
	B [%]	B [%]	B [%]	B [%]	B [%]	B [%]	S [%]
Event modelling	22	10	11	9	23	18	5
Leptons	2.0	2.4	2.9	2.6	2.9	2.6	1.8
Jets	5	6	11	8	4	8	4
b-tagging	7	1.4	0.6	2.1	2.8	4	3.1
$E_{\mathrm{T}}^{\mathrm{miss}}$	0.3	3.3	2.5	2.8	0.7	4	1.4
Non-prompt leptons	1.1	1.1		8	12	5	
Pile-up	5	1.2	5	3.3	1.7	3.5	2.2
Luminosity	2.0	2.0	2.1	1.3	0.8	1.6	2.1

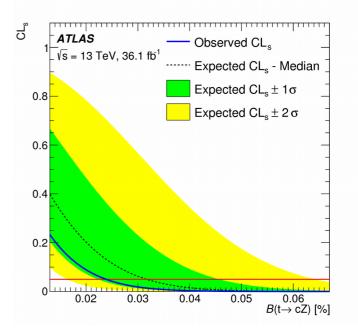

Systematic uncertainties

• CMS

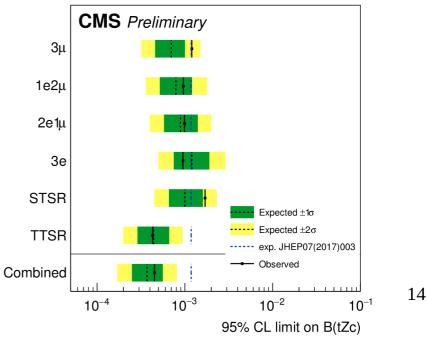
Source	Systematic input	Туре
NPL muon	50%	normalization
NPL electron	50%	normalization
background t Ī Z	30%	normalization
background WZ	30%	normalization
background tZq	30%	normalization
background ZZ	30%	normalization
background other MC	30%	normalization
trigger	1% (5%)	normalization
lepton identification	$\pm \sigma(p_{\mathrm{T}},\eta)$	shape
JES	$\pm \sigma(p_{\mathrm{T}},\eta)$	shape
JER	$\pm \sigma(p_{\mathrm{T}},\eta)$	shape
b-tagging	$\pm \sigma(p_{\mathrm{T}},\eta)$	shape
pileup	$\pm \sigma$ of min. bias cross section	shape
PDF	PDF4LHC recipe	shape (WZ, tZq, ttZ, ZZ)
luminosity	2.5%	normalization
renorm. and fact. scales	varying each indep. and corr.	shape



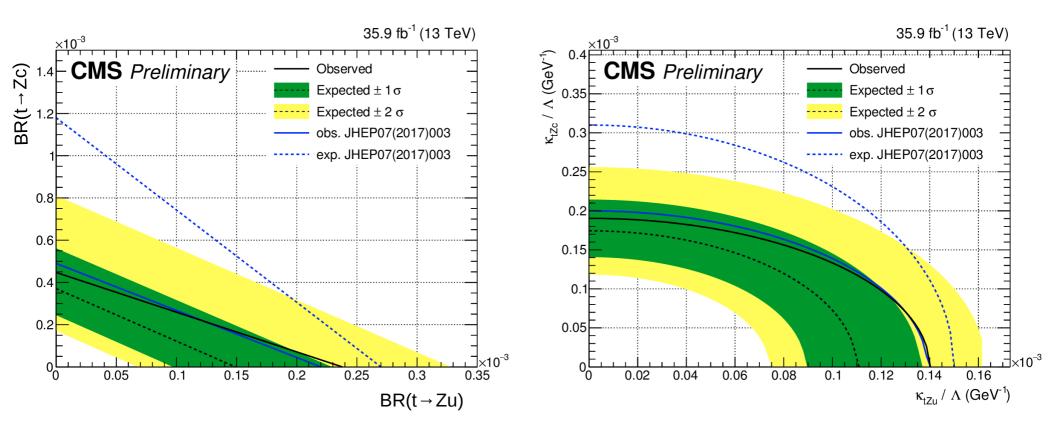

Results



35.9 fb⁻¹ (13 TeV)



CMS Preliminary


35.9 fb⁻¹ (13 TeV)

Results

• Limits on xsec / BR can be converted into coupling limits

CMS

Results

 Limits on BR can be interpreted in terms of coefficients of EFT operators

ATLAS

Operator	Observed	Expected
$ C_{uB}^{(31)} $	0.25	0.30
$ C_{uW}^{(31)} $	0.25	0.30
$ C_{uB}^{(32)} $	0.30	0.34
$ C_{uW}^{(32)} $	0.30	0.34

$$\Lambda = 1 \,\mathrm{TeV}$$

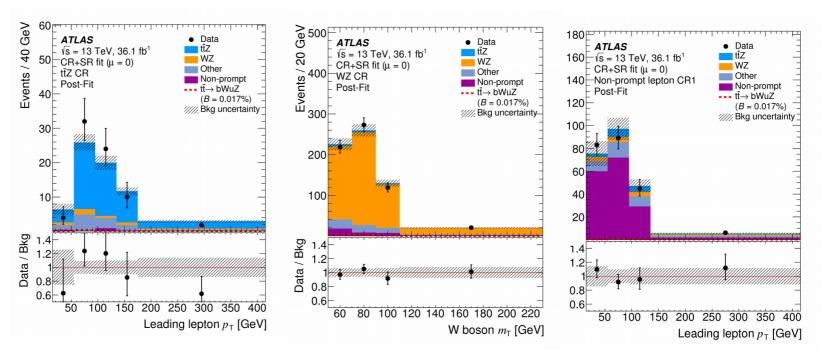
Z boson - tensor

 $\frac{g_W}{4\cos\theta_W m_Z} K_{ut}^L = \frac{v}{\sqrt{2}} (g_W \frac{C_{uW}^*}{\Lambda^2} \cos\theta_W - g_Y \frac{C_{uB}^*}{\Lambda^2} \sin\theta_W)$ $\frac{g_W}{4\cos\theta_W m_Z} K_{ut}^R = \frac{v}{\sqrt{2}} (g_W \frac{C_{tW}}{\Lambda^2} \cos\theta_W - g_Y \frac{C_{tB}}{\Lambda^2} \sin\theta_W)$ $\frac{g_W}{4\cos\theta_W m_Z} K_{ct}^L = \frac{v}{\sqrt{2}} (g_W \frac{C_{ctW}^*}{\Lambda^2} \cos\theta_W - g_Y \frac{C_{ctB}^*}{\Lambda^2} \sin\theta_W)$ $\frac{g_W}{4\cos\theta_W m_Z} K_{ct}^R = \frac{v}{\sqrt{2}} (g_W \frac{C_{tcW}}{\Lambda^2} \cos\theta_W - g_Y \frac{C_{tcB}}{\Lambda^2} \sin\theta_W)$

Z boson - vector
$$C_{\phi u}^{1+3} = -\frac{\Lambda^2}{v^2} X_{ut}^R$$
$$C_{\phi u}^{2+3} = -\frac{\Lambda^2}{v^2} X_{ct}^R$$
$$C_{\phi q}^{1,1+3} - C_{\phi q}^{3,1+3} = -\frac{\Lambda^2}{v^2} X_{ut}^L$$
$$C_{\phi q}^{1,2+3} - C_{\phi q}^{3,2+3} = -\frac{\Lambda^2}{v^2} X_{ct}^L$$
16

Summary

- Stringent limits on the FCNC Ztq vertex obtained by ATLAS and CMS
 - Orders of magnitude away from the SM but approaching some BSM extensions
 - Tri-lepton topologies chosen by both Collaborations
 - Result is still dominated by statistical uncertainty
 - Different approaches:
 - ATLAS: cut-based analysis + profiled likelihood fit on χ^2 (decay channel only)
 - CMS: BDT (production + decay channels)



BACKUP SLIDES

Background modeling

• ATLAS

\mathbf{Sample}		$WZ \ CR$	$ZZ \ CR$	Non-prompt	$\operatorname{Non-prompt}$
				lepton $CR0$	lepton $CR1$
$t\bar{t}Z$	61 ± 9	16.3 ± 3.1	0 ± 0	6.1 ± 1.2	22.1 ± 3.2
WZ	9 ± 9	560 ± 240	0 ± 0	150 ± 70	20 ± 9
ZZ	0.07 ± 0.03	48 ± 11	92 ± 20	58 ± 16	9.0 ± 2.3
Non-prompt leptons	3 ± 6	28 ± 16	0 ± 0	150 ± 50	140 ± 70
Other backgrounds	13.4 ± 2.7	22 ± 5	1.0 ± 0.6	17 ± 6	32 ± 6
Total background	87 ± 15	670 ± 240	93 ± 20	380 ± 90	230 ± 70
Data	81	734	87	433	260
Data / Bkg	0.94 ± 0.19	1.1 ± 0.4	0.94 ± 0.23	1.13 ± 0.28	1.1 ± 0.4

