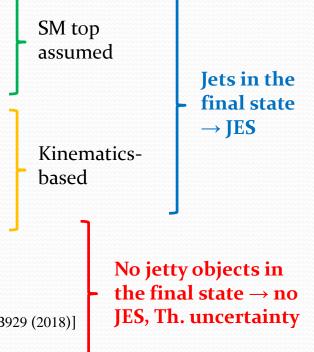
Fragmentation Uncertainties in Hadronic Observables for Top-quark Mass Measurements

Doojin Kim

LHC Top Working Group Meeting at CERN, May 16, 2018


In collaboration with Gennaro Corcella and Roberto Franceschini, Nucl.Phys. B929 (2018) 485-526, arXiv:1712.05801

Top Quark Mass Measurements

 \Box Precision m_{top} measurement: extremely important in both SM and BSM

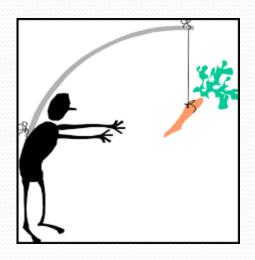
□ From standard/conventional approaches to alternative ones

- Template method [ATLAS, Eur. Phys. J. C72 (2012)]
- Ideogram method [CMS PAS TOP 14-001]
- Matrix element method [DØ, Phys.Rev. D91 (2015) 112003]
- Cross sections [ATLAS, Eur. Phys. K. C74 (2014), CONF 2014-053]
- Endpoint method [CMS PAS TOP 11-027; CMS TOP 15-008]
- ✤ *b*-jet energy-peak method [CMS PAS TOP 15-002]
- Solvability method [DK, Matchev and Shyamsundar, in progress]
- J/ψ method [CMS PAS TOP 15-014]
- ✤ B-hadron 2D-decay length [CMS PAS TOP 12-030]
- Leptonic final state [CMS PAS TOP 16-002]
- * <u>B-hadron observables</u> [Corcella, Franceschini and DK, Nucl.Phys. B929 (2018)]
- Many more which I can't exhaust

Motivation for Different Measurement Strategies

□ From a <u>more experimental</u> point of

view,


different methods having

different sensitivity to

systematics

complementary to one

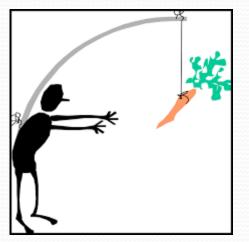
another

2

Motivation for Different Measurement Strategies

□ From a <u>more experimental</u> point of

view,


different methods having

different sensitivity to

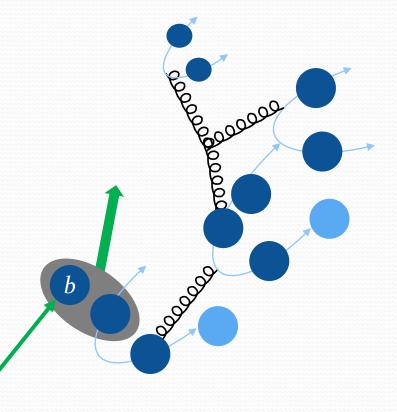
systematics

complementary to one

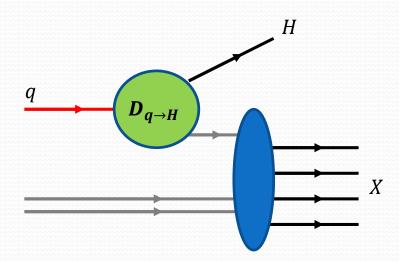
another

- □ From a <u>more phenomenological</u> point of view,
 - good exercise/testbed for new physics signature
 - ✤ pair-produced mother

particles, invisible particles,

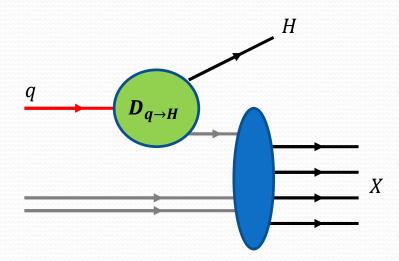

multi-step decays, etc.

 (Potentially) a new handle in search for new physics, e.g., b
 partner searches

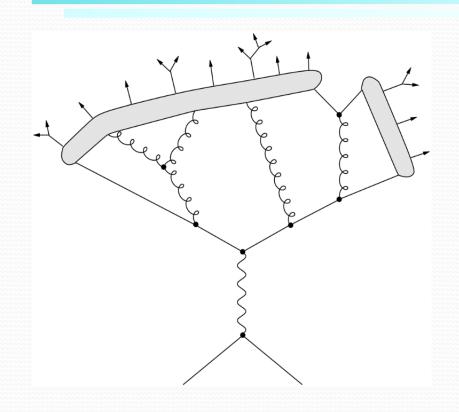

B-hadron Observables

"Pure tracker" observables with δ_{sys} < 1% available
 Crucial to understand the transformation from a quark to hadrons

 However, challenging because it is governed by non-perturbative QCD (similar conclusions hold for *B*-hadron decay length method [Hill, Incandela, Lamb (2005); CMS-PAS-TOP-12-030])



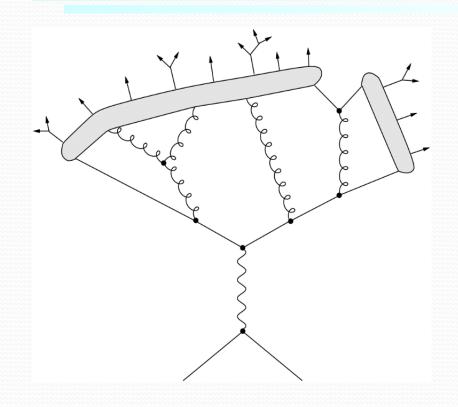
Filling the Gap: Theoretical Approach


- □ Fitting fragmentation function, $D_{q \to H}(z)$
- Precision data available at LEP [arXiv: 1102.4748, hepex/01120282] and SLD [hep-ex/0202031]
- For *b* quark, the extraction of the fragmentation function at NNLO in *α_s* [Fickinger, Fleming, Kim,
 Mereghetti (2016)], NLO+NLL [Cacciari, Nason, Oleari (2005)]

Filling the Gap: Theoretical Approach

- □ Fitting fragmentation function, $D_{q \to H}(z)$
- Precision data available at LEP [arXiv: 1102.4748, hepex/01120282] and SLD [hep-ex/0202031]
- For *b* quark, the extraction of the fragmentation function at NNLO in *α_s* [Fickinger, Fleming, Kim, Mereghetti (2016)], NLO+NLL [Cacciari, Nason, Oleari (2005)]
- Higher order corrections necessary (including resummation sometimes)
- Relying on factorization of the cross section to a very high accuracy
- Not guaranteed to work equally well when lepton collider data is applied to hardon colliders

Filling the Gap: Phenomenological Approach



□ Employing hadronization model with

phenomenological parameters [Andersson, Gustafson, Ingelman, Sjostrand (1983)]

"Tuning" of the parameters to reproduce the available data

Filling the Gap: Phenomenological Approach

Employing hadronization model with

phenomenological parameters [Andersson, Gustafson, Ingelman, Sjostrand (1983)]

"Tuning" of the parameters to reproduce the available data

□ **Not obvious** that the tuned model (with

- $e^+e^- \rightarrow$ hadrons) describes the future data [D. d'Enterria et al. (2013)]
- Should be tested at hadron collider environment (incredible amount of statistics available!!)

Our Goal

- Top quark mass sensitivity to parameters
 - What parameters should be
 - constrained to achieve
 - better precision
 - How to constrain them

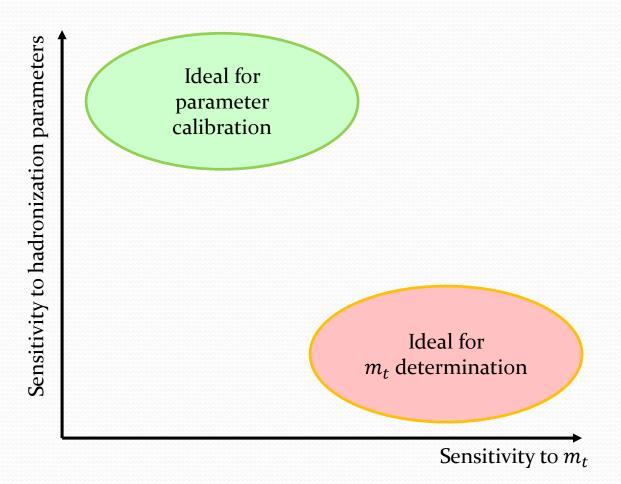
Our Goal

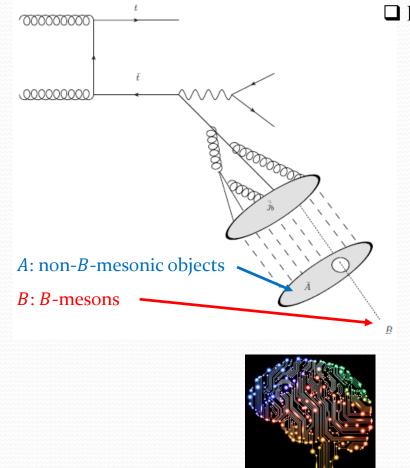
m_t determination observables

Difference Top quark mass sensitivity to

parameters

What parameters should be

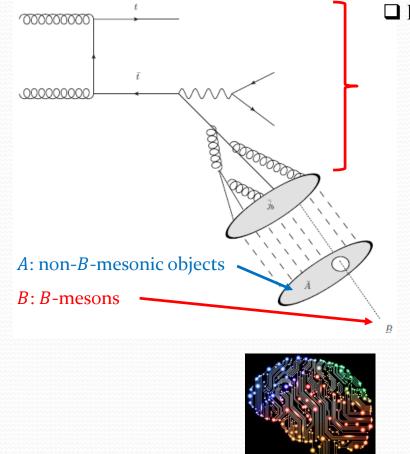

constrained to achieve


better precision

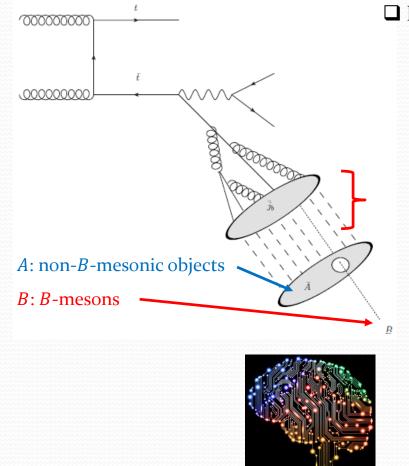
How to constrain them

Calibration observables

Ideal Observables



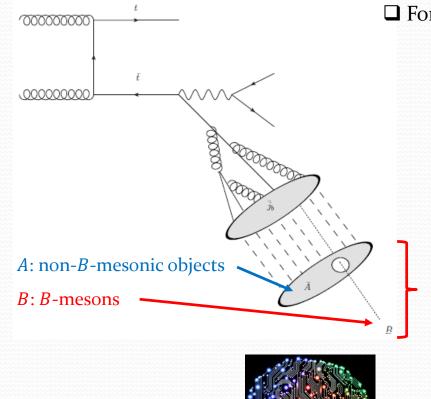
□ For a given input top mass,


- 1) set relevant parameters (next slide),
- 2) generate, shower, and hadronize leptonic $t\bar{t}$ events using PYTHIA 8.2.19,
- 3) find anti- k_t jets using FastJet,
- 4) find jets containing a *B*-hadron as a constituent, and extract its information,
- 5) evaluate various *B*-hadron observables/
 calibration variables along with (sometimes)
 leptons: Mellin moments, peak/endpoint,
- 6) Correlate them with input top masses and find sensitivity measures (defined later),
- 7) Repeat 1) through 6) for other parameter sets

Doojin Kim, CERN

□ For a given input top mass,

- 1) set relevant parameters (next slide),
- 2) generate, shower, and hadronize leptonic $t\bar{t}$ events using PYTHIA 8.2.19,
- 3) find anti- k_t jets using FastJet,
- 4) find jets containing a *B*-hadron as a constituent, and extract its information,
- 5) evaluate various *B*-hadron observables/
 calibration variables along with (sometimes)
 leptons: Mellin moments, peak/endpoint,
- 6) Correlate them with input top masses and find sensitivity measures (defined later),
- 7) Repeat 1) through 6) for other parameter sets

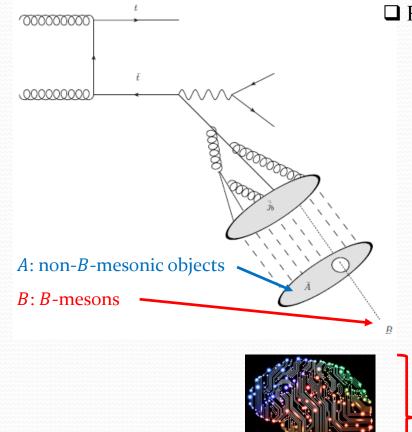

□ For a given input top mass,

- 1) set relevant parameters (next slide),
- 2) generate, shower, and hadronize leptonic $t\bar{t}$ events using PYTHIA 8.2.19,

3) find anti- k_t jets using FastJet,

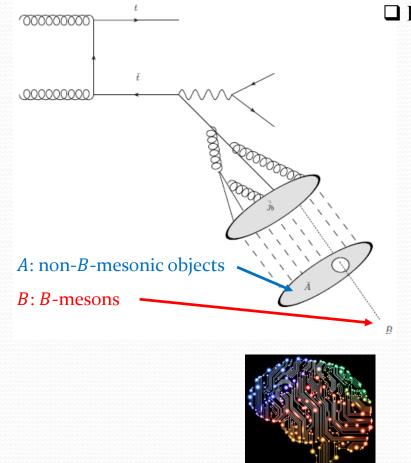
- 4) find jets containing a *B*-hadron as a constituent, and extract its information,
- 5) evaluate various *B*-hadron observables/
 calibration variables along with (sometimes)
 leptons: Mellin moments, peak/endpoint,
- 6) Correlate them with input top masses and find sensitivity measures (defined later),
- 7) Repeat 1) through 6) for other parameter sets

Doojin Kim, CERN


□ For a given input top mass,

- 1) set relevant parameters (next slide),
- 2) generate, shower, and hadronize leptonic $t\bar{t}$ events using PYTHIA 8.2.19,
- 3) find anti- k_t jets using FastJet,
- 4) find jets containing a *B*-hadron as a constituent, and extract its information,
- 5) evaluate various *B*-hadron observables/

calibration variables along with (sometimes)


leptons: Mellin moments, peak/endpoint,

- 6) Correlate them with input top masses and find sensitivity measures (defined later),
- 7) Repeat 1) through 6) for other parameter sets

□ For a given input top mass,

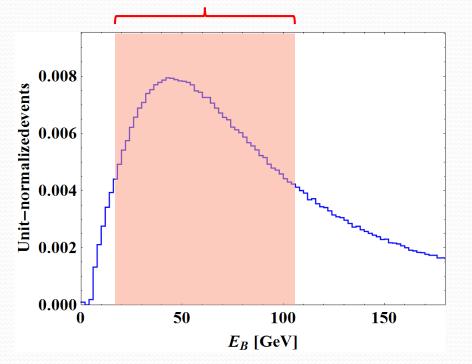
- 1) set relevant parameters (next slide),
- 2) generate, shower, and hadronize leptonic $t\bar{t}$ events using PYTHIA 8.2.19,
- 3) find anti- k_t jets using FastJet,
- find jets containing a *B*-hadron as a constituent, and extract its information,
- 5) evaluate various *B*-hadron observables/
 calibration variables along with (sometimes)
 leptons: Mellin moments, peak/endpoint,
- 6) Correlate them with input top masses and find sensitivity measures (defined later),
- 7) Repeat 1) through 6) for other parameter sets

□ For a given input top mass,

- 1) set relevant parameters (next slide),
- 2) generate, shower, and hadronize leptonic $t\bar{t}$ events using PYTHIA 8.2.19,
- 3) find anti- k_t jets using FastJet,
- 4) find jets containing a *B*-hadron as a constituent, and extract its information,
- 5) evaluate various *B*-hadron observables/
 calibration variables along with (sometimes)
 leptons: Mellin moments, peak/endpoint,
- 6) Correlate them with input top masses and find sensitivity measures (defined later),
- 7) Repeat 1) through 6) for other parameter sets

Pythia Parameters

	Pythia8 parameter	range	Monash default
$p_{T,\min}$	TIMESHOWER: PTMIN	$0.25-1.00 { m GeV}$	0.5
$lpha_{s,\mathrm{FSR}}$	TIMESHOWER: ALPHASVALUE	0.1092 - 0.1638	0.1365
recoil	TIMESHOWER:RECOILTOCOLOURED	on and off	on
b quark mass	5:м0	3.8-5.8 GeV	4.8 GeV
Bowler's r_B	StringZ:rFactB	0.713-0.813	0.855
string model a	StringZ:aNonstandardB	0.54-0.82	0.68
string model b	StringZ:bNonstandardB	0.78-1.18	0.98

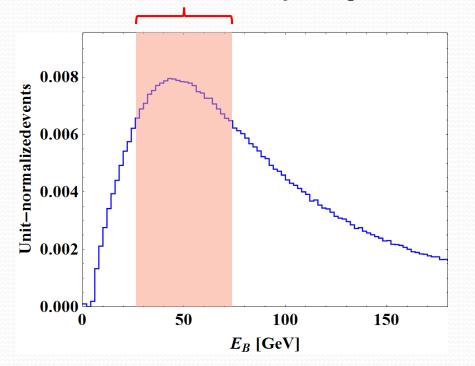

Showering parameters

Heavy flavorspecific had. parameters

Table 1: Ranges and central values of the parameters that we varied. Note that some values are not varied around the default values of the Monash tuning. For instance we run r_B around the mid-point between PYTHIA6.4 and PYTHIA8-MONASH values.

Measurements: Mellin Moment Analysis

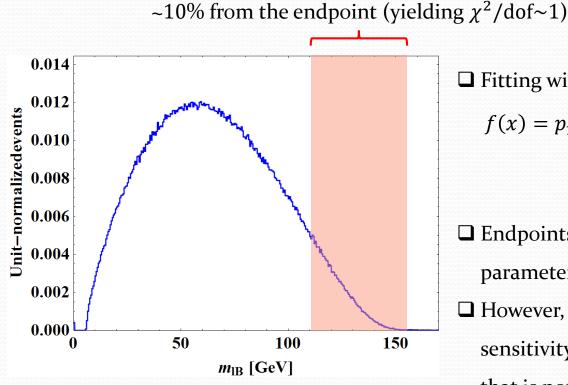
Full Width Half Maximum (FWHM)


□ First Mellin moment

$$\mathcal{M}_{1} = \int_{FWHM} dx \ xf(x)$$
Average of *x* in the range

Doojin Kim, CERN

Measurements: Shape Analysis - Peak


Full Width at ³/₄ Maximum (yielding χ^2 /dof~1)

Fitting template inspired by the one in
 [Agashe, Franceschini, DK, Phys.Rev. D88
 (2012) 057701]

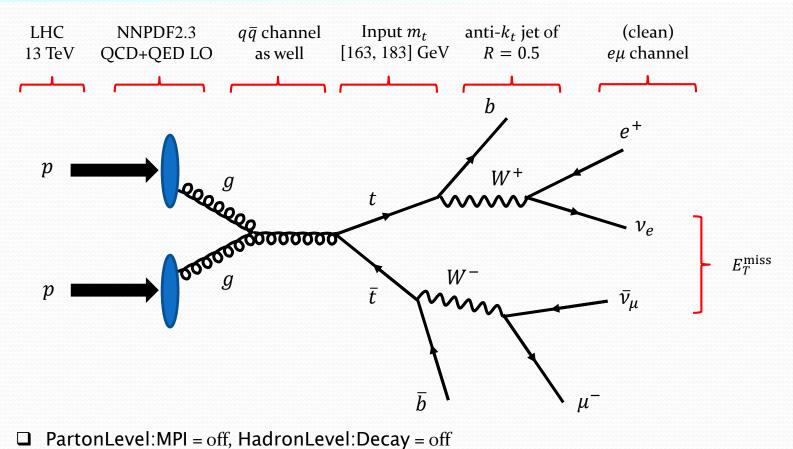
$$f(x) = p_1 \exp\left[-p_2\left(\frac{x}{p_3} + \frac{p_3}{x}\right)\right]$$
peak position

Measurements: Shape Analysis - Endpoint

□ Fitting with a second-order polynomial

 $f(x) = p_1(x - x_m)^2 + p_2(x - x_m)$

endpoint


□ Endpoints are insensitive to Pythia parameters (i.e., ideal for *m_t* determination).
 □ However, 10% bulk may reintroduce the sensitivity. ⇒ Fortunately, we have found that is not the case with smaller fit ranges.

*m*_t Determination Observables

Observable	\mathcal{M}_1	Shape	Features
E _B	V	∨ (peak)	• Expecting inheritance of "invariance" property of the energy-peak in the <i>b</i> -jet energy spectrum
$E_{B_1} + E_{B_2}$	V	-	Two <i>B</i> -meson tagging required
<i>Р_{Т, В}</i>	V	-	
$P_{T, B_1} + P_{T, B_2}$	V	-	Two <i>B</i> -meson tagging required
$m_{B\ell}$	V	V	 True pairing (theory-level) Experimental observable paring: the smaller in each combination
$m_{BB\ell\ell}$	V	-	Two <i>B</i> -meson tagging required
m _{T2}	V	V	 (B) and (Bl) subsystems True assignment (theory-level) for the (Bl) subsystems Experimental observable paring for the (Bl) subsystems: the smaller of the two possible assignments Different ISR and MET definitions
$m_{T2,\perp}[1]$	V	V	 ISR-free observables (B) and (Bℓ) subsystems Different ISR and MET definitions

[1]: Matchev and Park (2009)

Event Simulation

Cuts: $p_{T,j} > 30 \text{ GeV}, |\eta_j| < 2.4, \quad p_{T,\ell} > 20 \text{ GeV}, |\eta_\ell| < 2.4.$

Summary of Results: Mellin Moments

0	Range	$\Delta_{m_t}^{(\mathcal{M}_{\mathcal{O}})}$				$\Delta_{\theta}^{(m_t)}$				$\Delta_{\theta}^{(m_t)} = \frac{\delta m_t / m_t}{\delta \theta / \theta}$
	Italige	Δm_t	$\alpha_{s,FSR}$	m_b	$p_{T,\min}$	a	b	r_B	recoil	$\Delta_{\theta} = \delta\theta/\theta$
E_B	28-110	0.92(5)	-0.52(2)	-0.21(3)	0.057(4)	-0.02(2)	0.06(2)	-0.10(5)	-0.022(5)	000 /00
$p_{T,B}$	24-72	0.92(3)	-0.54(2)	-0.21(2)	0.056(4)	-0.03(2)	0.07(1)	-0.09(4)	-0.023(2)	$\Delta_{m_t}^{(\mathcal{M}_{\mathcal{O}})} = \frac{\delta \mathcal{M}_{\mathcal{O}} / \mathcal{M}_{\mathcal{O}}}{\delta m_t / m_t}$
$m_{B\ell, true}$	47-125	1.30(2)	-0.241(8)	-0.072(6)	0.022(2)	-0.007(5)	0.023(6)	-0.02(2)	-0.008(2)	$\Delta m_t = \delta m_t / m_t$
$m_{B\ell^+,\min}$	30-115	1.16(2)	-0.282(5)	-0.078(7)	0.024(2)	-0.011(7)	0.021(7)	-0.04(2)	-0.010(1)	
$E_B + E_B$	83-244	0.92(4)	-0.50(2)	-0.21(2)	0.056(6)	-0.02(2)	0.07(3)	-0.08(6)	-0.020(4)	
$m_{BB\ell\ell}$	172-329	0.96(2)	-0.25(1)	-0.10(1)	0.028(3)	-0.01(1)	0.026(7)	-0.03(3)	-0.008(2)	
$m_{T2,B\ell,\mathrm{true}}^{(\mathrm{mET})}$	73-148	0.95(3)	-0.27(1)	-0.09(1)	0.029(3)	-0.009(9)	0.03(1)	-0.03(4)	-0.010(3)	
$m_{T2,B\ell,\min}^{(ext{mET})}$	73-148	0.95(3)	-0.27(1)	-0.09(1)	0.029(3)	-0.009(9)	0.03(1)	-0.03(4)	-0.010(3)	
$m_{T2}^{(\ell\nu)}$	0.5-80	-0.118(7)	-0.03(2)	0.00(2)	0.002(8)	0.00(2)	-0.01(2)	0.00(7)	0.004(5)	
$m_{\ell\ell}$	37.5-145	0.40(5)	-0.03(5)	-0.01(4)	0.00(1)	0.01(5)	0.01(4)	0.0(1)	0.00(1)	
$E_{\ell} + E_{\ell}$	75-230	0.54(5)	-0.03(3)	0.00(3)	0.003(9)	0.01(3)	-0.00(2)	0.06(9)	0.003(8)	
E_ℓ	23-100	0.48(4)	-0.02(5)	0.00(5)	0.004(9)	0.01(4)	-0.01(4)	-0.06(9)	0.003(8)	

Summary of Results: Mellin Moments

0	Range	$\Delta_{m_t}^{(\mathcal{M}_{\mathcal{O}})}$				$\Delta_{\theta}^{(m_t)}$				$\Delta_{\theta}^{(m_t)} =$	$=\frac{\delta m_t/m_t}{\delta m_t}$
	Italige	Δm_t	$\alpha_{s,FSR}$	m_b	$p_{T,\min}$	a	b	r_B	recoil	-0	- δθ/θ
E_B	28-110	0.92(5)	-0.52(2)	-0.21(3)	0.057(4)	-0.02(2)	0.06(2)	-0.10(5)	-0.022(5)		826 /26
$p_{T,B}$	24-72	0.92(3)	-0.54(2)	-0.21(2)	0.056(4)	-0.03(2)	0.07(1)	-0.09(4)	-0.023(2)	$\Delta_{m_t}^{(\mathcal{M}_{\mathcal{O}})}$ =	$=\frac{\delta \mathcal{M}_{\mathcal{O}}/\mathcal{M}_{\mathcal{O}}}{\delta \mathcal{M}_{\mathcal{O}}}$
$m_{B\ell, true}$	47-125	1.30(2)	-0.241(8)	-0.072(6)	0.022(2)	-0.007(5)	0.023(6)	-0.02(2)	-0.008(2)	$ ^{-m_t}$	$\delta m_t/m_t$
$m_{B\ell^+,\min}$	30-115	1.16(2)	-0.282(5)	-0.078(7)	0.024(2)	-0.011(7)	0.021(7)	-0.04(2)	-0.010(1)		
$E_B + E_B$	83-244	0.92(4)	-0.50(2)	-0.21(2)	0.056(6)	-0.02(2)	0.07(3)	-0.08(6)	-0.020(4)		
$m_{BB\ell\ell}$	172-329	0.96(2)	-0.25(1)	-0.10(1)	0.028(3)	-0.01(1)	0.026(7)	-0.03(3)	-0.008(2)		
$m_{T2,B\ell,\mathrm{true}}^{(\mathrm{mET})}$	73-148	0.95(3)	-0.27(1)	-0.09(1)	0.029(3)	-0.009(9)	0.03(1)	-0.03(4)	-0.010(3)		
$m_{T2,B\ell,\min}^{(\text{mET})}$	73-148	0.95(3)	-0.27(1)	-0.09(1)	0.029(3)	-0.009(9)	0.03(1)	-0.03(4)	-0.010(3)		
$m_{T2}^{(\ell\nu)}$	0.5-80	-0.118(7)	-0.03(2)	0.00(2)	0.002(8)	0.00(2)	-0.01(2)	0.00(7)	0.004(5)		
$m_{\ell\ell}$	37.5-145	0.40(5)	-0.03(5)	-0.01(4)	0.00(1)	0.01(5)	0.01(4)	0.0(1)	0.00(1)		
$E_{\ell} + E_{\ell}$	75-230	0.54(5)	-0.03(3)	0.00(3)	0.003(9)	0.01(3)	-0.00(2)	0.06(9)	0.003(8)		
E_ℓ	23-100	0.48(4)	-0.02(5)	0.00(5)	0.004(9)	0.01(4)	-0.01(4)	-0.06(9)	0.003(8)		

- □ Top quark mass measurements in *B*-hadron observables are **sensitive most to** $\alpha_{s,FSR}$, e.g., 10% uncertainty in $\alpha_{s,FSR}$ corresponds to 2 5% uncertainty in the top quark mass \Rightarrow affecting radiation in the final state, in turn, changing energy scale of *B*-hadrons!
- □ Purely leptonic observables have least sensitivities to parameters, but less sensitivity to $m_t \Rightarrow B-\ell$ system
 - is a good compromise as it has comparable sensitivity to m_t but smaller sensitivities to parameters.

Summary of Results: Shape

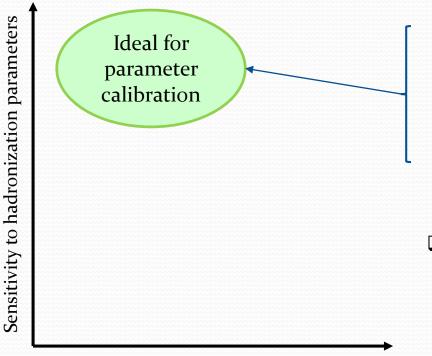
O	Range	$\Delta_{m_t}^{(\mathcal{O})}$				$\Delta_{\theta}^{(m_t)}$				$\Delta_{\theta}^{(m_t)} = \frac{\delta m_t / m_t}{\delta \theta / \theta}$
U	nange	Δ_{m_t}	$\alpha_{s,FSR}$	m_b	$p_{T,\min}$	a	b	r_B	recoil	$\Delta_{\theta} \qquad \delta\theta/\theta$
$E_{B,\mathrm{peak}}$	35-85	0.8(1)	-0.74(9)	-0.26(4)	0.05(1)	-0.04(2)	0.08(3)	-0.07(9)	-0.031(7)	0.0.1.0
$\breve{m}_{B\ell,\mathrm{true}}$	127-150	1.26(1)	0.017(6)	0.003(9)	-0.006(2)	-0.008(2)	0.008(7)	-0.016(6)	-0.00042(9)	$\Delta_{m_t}^{(\mathcal{O})} = \frac{\delta \mathcal{O}/\mathcal{O}}{\delta m_t / m_t}$
$\check{m}_{B\ell,\min}$	127-150	1.28(1)	-0.023(3)	-0.022(2)	0.006(3)	-0.008(3)	0.008(3)	-0.02(1)	-0.0001(6)	$\Delta_{m_t} = \overline{\delta m_t / m_t}$
$\breve{m}^{(ext{mET})}_{T2,B\ell, ext{true}}$	150-170	0.98(2)	-0.01(2)	-0.023(3)	0.007(1)	-0.006(3)	0.010(4)	-0.011(9)	-0.0002(8)	
$\breve{m}_{T2,B\ell,\min}^{(ext{mET})}$	150-170	0.97(2)	-0.02(1)	-0.021(5)	0.006(2)	-0.006(3)	0.009(4)	-0.01(1)	-0.0001(8)	
$reve{m}_{T2,B\ell,\min,\perp}^{(ext{mET})}$	138-170	0.89(2)	-0.071(5)	-0.046(7)	0.012(2)	-0.011(7)	0.010(8)	-0.01(2)	-0.002(1)	
$\breve{m}^{(ext{mET})}_{T2,B}$	142-170	0.95(3)	-0.089(6)	-0.064(6)	0.018(1)	-0.017(4)	0.031(4)	-0.04(2)	-0.0028(8)	
$\breve{m}_{T2,B,\perp}^{(ext{mET})}$	126-170	0.94(4)	-0.07(1)	-0.04(1)	0.011(3)	-0.009(9)	0.02(1)	-0.03(4)	-0.001(2)	

Summary of Results: Shape

0	Range	$\Delta_{m_t}^{(\mathcal{O})}$				$\Delta_{\theta}^{(m_t)}$				$\Delta_{\theta}^{(m_t)}$	$=\frac{\delta m_t/m_t}{\delta m_t}$
	Italige	Δm_t	$\alpha_{s,FSR}$	m_b	$p_{T,\min}$		b	r_B	recoil] -0	$\delta \theta / \theta$
$E_{B,\text{peak}}$	35-85	0.8(1)	-0.74(9)	-0.26(4)	0.05(1)	-0.04(2)	0.08(3)	-0.07(9)	-0.031(7)		
$\breve{m}_{B\ell,\mathrm{true}}$	127 - 150	1.26(1)	0.017(6)	0.003(9)	-0.006(2)	-0.008(2)	0.008(7)	-0.016(6)	-0.00042(9)	$\Delta_{m_t}^{(\mathcal{O})} =$	δ0/0
$\breve{m}_{B\ell,\min}$	127-150	1.28(1)	-0.023(3)	-0.022(2)	0.006(3)	-0.008(3)	0.008(3)	-0.02(1)	-0.0001(6)	Δm_t –	$\delta m_t/m_t$
$\check{m}^{(ext{mET})}_{T2,B\ell, ext{true}}$	150-170	0.98(2)	-0.01(2)	-0.023(3)	0.007(1)	-0.006(3)	0.010(4)	-0.011(9)	-0.0002(8)		
$\breve{m}_{T2,B\ell,\min}^{(ext{mET})}$	150-170	0.97(2)	-0.02(1)	-0.021(5)	0.006(2)	-0.006(3)	0.009(4)	-0.01(1)	-0.0001(8)		
$\breve{m}_{T2,B\ell,\min,\perp}^{(ext{mET})}$	138-170	0.89(2)	-0.071(5)	-0.046(7)	0.012(2)	-0.011(7)	0.010(8)	-0.01(2)	-0.002(1)		
$\breve{m}_{T2,B}^{(ext{mET})}$	142-170	0.95(3)	-0.089(6)	-0.064(6)	0.018(1)	-0.017(4)	0.031(4)	-0.04(2)	-0.0028(8)		
$\breve{m}_{T2,B,\perp}^{(ext{mET})}$	126-170	0.94(4)	-0.07(1)	-0.04(1)	0.011(3)	-0.009(9)	0.02(1)	-0.03(4)	-0.001(2)		
			\smile	\smile				\smile			

- □ Top quark mass measurements in shape observables are less sensitive to *α_{s,FSR}* (except energy-peak in *B*-hadron energy spectrum) ⇒ kinematic endpoints are less affected by process dynamics
 □ Sensitivities of top quark mass to the bottom mass and the Lund-Bowler parameter become comparable!
- □ Statistics will be a major challenge in performing precision measurements of endpoints.

Moral from the Results



□ No ideal/perfect observables least sensitive to Pythia parameters, but

highly sensitive to top quark mass whose associate channels come with enough statistics

- \Rightarrow Calibrate the parameters
- \Rightarrow What to constrain and how to constrain

Ideal Calibration Observables

Sensitivity to m_t

Ideal "in-situ" calibration observables:
 no/little sensitivity to (input) top quark
 mass, but having decent sensitivities to
 hadronization and showering parameters
 in *t̄t* events [see for similar effort, e.g. ATL-PHYS-PUB-2015-007]

 ❑ We don't know which is ideal or not a priori.
 ⇒ Introduce many observables having different sensitivities to parameters in order to maximize the ability for calibration.

Selected Calibration Observables

- $\stackrel{\bullet}{\star} \frac{p_{T,B}}{p_{T,j_b}}, \frac{E_B}{E_{j_b}}, \frac{E_B}{E_{\ell}}, \frac{E_B}{E_{\ell} + E_{\overline{\ell}}}$ $\stackrel{\bullet}{\star} m(j_b) \text{ GeV}^{-1}$
- $\rho(r) = \frac{1}{\Delta r} \frac{1}{E_j} \sum_{\text{track}} E_{\text{track}} \cdot \Theta(|r \Delta R_{j,\text{track}}| < \delta r)$: the radial jet energy density [ATLAS]

Collaboration, arXiv:1307.5749], $\Theta(x)$: Heaviside theta function

$$\bigstar \ \chi_B(X_B) = \frac{2E_B}{X_B} \text{ with } X_B = m_{j_b j_{\overline{b}}}, \sqrt{S_{\min,bb}}, \sum p_{T,j_{b/\overline{b}}}, E_{j_b} + E_{j_{\overline{b}}}$$

$\bigstar \frac{m_{BB}}{m_{j_b j_{\overline{b}}}}$

 $\diamond \ \Delta \phi(j_b j_{\bar{b}}), \Delta R(j_b j_{\bar{b}}), \Delta \phi(BB), \Delta R(BB), |\Delta \phi(BB) - \Delta \phi(j_b j_{\bar{b}})|, |\Delta R(BB) - \Delta R(j_b j_{\bar{b}})|$

Different Information

Calibration observables sensitive to hadronization and showering parameters

★ Variables $\frac{p_{T,B}}{p_{T,j_b}}$ and $\rho(r)$ are sensitive to the importance of the heavy-quark hadron in the jet and to the energy distribution in the jet \Rightarrow suitable to **probe the dynamics on the conversion**

of a single parton into a hadron

- ★ χ_B variables are more sensitive to global nature (i.e., $b\bar{b}$ system) ⇒ probing "cross-talk" between partons in the process of forming color-singlet hadrons
- Various aspects probed by different χ_B options

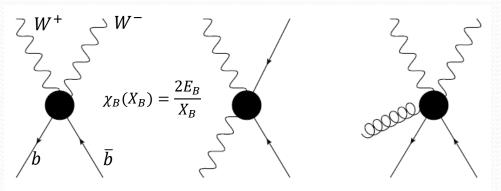


Figure 2: Three kinematical configurations distinguished by the X_B choices. The first two can have same $|p_{T,j_b}| + |p_{T,\bar{j}_b}|$ but differ for m_{bb} , whereas the first and the third differs for $\sqrt{s_{min}}$, despite having same m_{bb} and same $|p_{T,j_b}| + |p_{T,\bar{j}_b}|$.

Sensitivities investigated from different angles!!

Sensitivity Measure

 $\Box \text{ Sensitivity measure: } \Delta_{\theta}^{(\mathcal{M}_{\mathcal{O}})} = \frac{\delta \mathcal{M}_{\mathcal{O}}/\mathcal{M}_{\mathcal{O}}}{\delta \theta/\theta}$

- ↔ $\mathcal{M}_{\mathcal{O}}$: Mellin moment of observable
- * θ : hadronization and showering parameters

 \Box Observables with larger Δ : **best diagnostics** of the accuracy of the tunes

Summary of Results

						$\Delta_{\theta}^{(\mathcal{M}_{\mathcal{O}})}$						
0	Range	$\Delta_{m_t}^{(\mathcal{M}_{\mathcal{O}})}$										
	1000000	Δm_t	$\alpha_{s,FSR}$	m_b	$p_{T,\min}$	a	b	r_B	recoil			
ho(r)	0-0.04	-0.007(7)	0.78(1)	0.204(4)	-0.1286(8)	0.029(3)	-0.043(4)	0.056(7)	0.020(1)			
$p_{T,B}/p_{T,j_b}$	0.6-0.998	-0.053(1)	-0.220(3)	-0.1397(8)	0.0353(5)	-0.0187(4)	0.0451(6)	-0.0518(9)	-0.0108(3)			
E_B/E_{j_b}	0.6-0.998	-0.049(1)	-0.220(3)	-0.1381(8)	0.0360(5)	-0.0186(4)	0.0447(6)	-0.052(1)	-0.0107(3)			
E_B/E_ℓ	0.05-1.5	-0.155(7)	-0.156(3)	-0.053(3)	0.0149(7)	-0.007(2)	0.016(2)	-0.016(10)	-0.0087(7)			
$E_B/(E_\ell + E_{\bar{\ell}})$	0.05-1.0	0.021(5)	-0.231(2)	-0.082(4)	0.0228(4)	-0.011(2)	0.026(2)	-0.028(6)	-0.0113(3)			
$m(j_{ar b})/{ m GeV}$	8-20	0.229(3)	0.218(1)	0.022(1)	-0.0219(7)	0.000(1)	-0.001(1)	0.001(3)	0.0050(3)			
$\chi_B(\sqrt{s_{\min,bb}})$	0.075-0.875	-0.177(4)	-0.262(4)	-0.086(1)	0.0255(3)	-0.0105(10)	0.027(1)	-0.031(3)	-0.0137(2)			
$\chi_B \left(E_{j_b} + E_{\overline{j}_b} \right)$	0.175-1.375	-0.109(2)	-0.357(4)	-0.134(1)	0.0373(3)	-0.016(1)	0.040(1)	-0.045(4)	-0.0175(3)			
$\chi_B(m_{j_b j_{\overline{b}}})$	0.175-1.375	-0.089(3)	-0.252(3)	-0.080(1)	0.0248(3)	-0.010(1)	0.024(1)	-0.028(5)	-0.0126(2)			
$\chi_B\left(p_{T,j_b} + \left p_{T,\bar{j}_b}\right \right)$	0.46-1.38	-0.15(2)	-0.47(1)	-0.189(10)	0.054(3)	-0.023(10)	0.06(1)	-0.07(4)	-0.022(2)			
$m_{BB}/m_{j_b j_{ar b}}$	0.8-0.95	-0.0191(8)	-0.0623(7)	-0.0464(5)	0.0146(2)	-0.0093(3)	0.0180(4)	-0.0212(9)	-0.00296(10)			
$\Delta \phi(j_b j_{ar b})$	0.28-3.	-0.210(7)	0.027(3)	0.001(2)	-0.0014(5)	-0.000(3)	-0.000(1)	-0.003(9)	0.0003(5)			
$\Delta R(j_b j_{ar b})$	1.4-3.3	-0.071(3)	0.010(1)	0.0005(10)	-0.0004(2)	-0.000(1)	0.0004(9)	0.001(3)	0.0001(2)			
$\Delta \phi(BB)$	0.28-3.	-0.207(7)	0.026(2)	0.001(1)	-0.0008(4)	0.000(4)	0.000(2)	-0.000(8)	0.0002(5)			
$\Delta R(BB)$	1.4-3.3	-0.070(3)	0.009(1)	0.000(1)	-0.0003(2)	-0.0003(10)	0.0002(9)	-0.000(4)	0.0001(2)			
$ \Delta\phi(BB) - \Delta\phi(j_b j_{\bar{b}}) $	0-0.0488	0.06(1)	0.734(6)	0.099(5)	-0.088(2)	0.006(5)	-0.004(5)	0.01(2)	0.026(2)			
$ \Delta R(BB) - \Delta R(j_b j_{\bar{b}}) $	0-0.0992	0.10(1)	0.920(3)	0.079(5)	-0.075(1)	-0.000(4)	0.005(4)	-0.00(2)	0.0418(8)			

Summary of Results

Ø	Danga	$\Delta_{m_t}^{(\mathcal{M}_\mathcal{O})}$				$\Delta_{\theta}^{(\mathcal{M}_{\mathcal{O}})}$			
	Range	Δ_{m_t}	$\alpha_{s,FSR}$	m_b	$p_{T,\min}$	a	b	r_B	recoil
$\rho(r)$	0-0.04	-0.007(7)	0.78(1)	0.204(4)	-0.1286(8)	0.029(3)	-0.043(4)	0.056(7)	0.020(1)
$p_{T,B}/p_{T,j_b}$	0.6-0.998	-0.053(1)	-0.220(3)	-0.1397(8)	0.0353(5)	-0.0187(4)	0.0451(6)	-0.0518(9)	-0.0108(3)
E_B/E_{j_b}	0.6-0.998	-0.049(1)	-0.220(3)	-0.1381(8)	0.0360(5)	-0.0186(4)	0.0447(6)	-0.052(1)	-0.0107(3)
E_B/E_ℓ	0.05-1.5	-0.155(7)	-0.156(3)	-0.053(3)	0.0149(7)	-0.007(2)	0.016(2)	-0.016(10)	-0.0087(7)
$E_B/(E_\ell + E_{\bar{\ell}})$	0.05-1.0	0.021(5)	-0.231(2)	-0.082(4)	0.0228(4)	-0.011(2)	0.026(2)	-0.028(6)	-0.0113(3)
$m(j_{ar b})/{ m GeV}$	8-20	0.229(3)	0.218(1)	0.022(1)	-0.0219(7)	0.000(1)	-0.001(1)	0.001(3)	0.0050(3)
$\chi_B(\sqrt{s_{\min,bb}})$	0.075-0.875	-0.177(4)	-0.262(4)	-0.086(1)	0.0255(3)	-0.0105(10)	0.027(1)	-0.031(3)	-0.0137(2)
$\chi_B \left(E_{j_b} + E_{\overline{j}_b} \right)$	0.175-1.375	-0.109(2)	-0.357(4)	-0.134(1)	0.0373(3)	-0.016(1)	0.040(1)	-0.045(4)	-0.0175(3)
$\chi_B(m_{j_b j_{ar b}})$	0.175-1.375	-0.089(3)	-0.252(3)	-0.080(1)	0.0248(3)	-0.010(1)	0.024(1)	-0.028(5)	-0.0126(2)
$\chi_B\left(p_{T,j_b} + \left p_{T,\bar{j}_b}\right \right)$	0.46-1.38	-0.15(2)	-0.47(1)	-0.189(10)	0.054(3)	-0.023(10)	0.06(1)	-0.07(4)	-0.022(2)
$m_{BB}/m_{j_b j_{ar b}}$	0.8-0.95	-0.0191(8)	-0.0623(7)	-0.0464(5)	0.0146(2)	-0.0093(3)	0.0180(4)	-0.0212(9)	-0.00296(10)
$\Delta \phi(j_b j_{ar b})$	0.28-3.	-0.210(7)	0.027(3)	0.001(2)	-0.0014(5)	-0.000(3)	-0.000(1)	-0.003(9)	0.0003(5)
$\Delta R(j_b j_{ar b})$	1.4-3.3	-0.071(3)	0.010(1)	0.0005(10)	-0.0004(2)	-0.000(1)	0.0004(9)	0.001(3)	0.0001(2)
$\Delta \phi(BB)$	0.28-3.	-0.207(7)	0.026(2)	0.001(1)	-0.0008(4)	0.000(4)	0.000(2)	-0.000(8)	0.0002(5)
$\Delta R(BB)$	1.4-3.3	-0.070(3)	0.009(1)	0.000(1)	-0.0003(2)	-0.0003(10)	0.0002(9)	-0.000(4)	0.0001(2)
$ \Delta\phi(BB) - \Delta\phi(j_b j_{\bar{b}}) $	0-0.0488	0.06(1)	0.734(6)	0.099(5)	-0.088(2)	0.006(5)	-0.004(5)	0.01(2)	0.026(2)
$ \Delta R(BB) - \Delta R(j_b j_{\bar{b}}) $	0-0.0992	0.10(1)	0.920(3)	0.079(5)	-0.075(1)	-0.000(4)	0.005(4)	-0.00(2)	0.0418(8)

 $\Box \rho(r)$: (typically) **most sensitive variable** to both hadronization and shower parameters

Nevertheless, other variables contain useful/orthogonal information to constrain parameters (unless they are perfectly correlated)!!

Combined Constraining Power

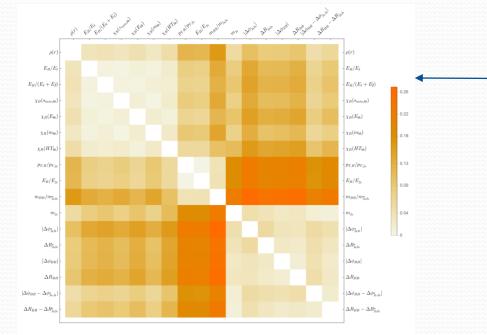
C Expressing the table in the previous slide as a matrix form, we find

 $\frac{\delta \mathcal{M}_{\mathcal{O}i}}{\mathcal{M}_{\mathcal{O}i}} = \left(\Delta_{\theta}^{(\mathcal{M}_{\mathcal{O}})}\right)_{ij} \frac{\delta \theta_{j}}{\theta_{j}},$ for parameter vector $\theta = \{\alpha_{s,FSR}, m_{b}, p_{T,\min}, a, b, r_{B}, recoil\}, and observable vector <math>O = \{\mathcal{O}_{i}\}.$

Sensitivity of parameters as functions of observables would have the form of

$$\frac{\delta\theta_j}{\theta_j} = \left(\tilde{\Delta}_{\theta}^{(\mathcal{M}_{\mathcal{O}})}\right)_{ij} \frac{\delta\mathcal{M}_{\mathcal{O}i}}{\mathcal{M}_{\mathcal{O}i}}, \text{ where } \tilde{\Delta}_{\theta}^{(\mathcal{M}_{\mathcal{O}})} \cdot \Delta_{m_t}^{(\mathcal{M}_{\mathcal{O}})} = \mathbb{1}.$$

 $\Box \Delta_{m_t}^{(\mathcal{M}_{\mathcal{O}})}$ is not usually a square matrix.

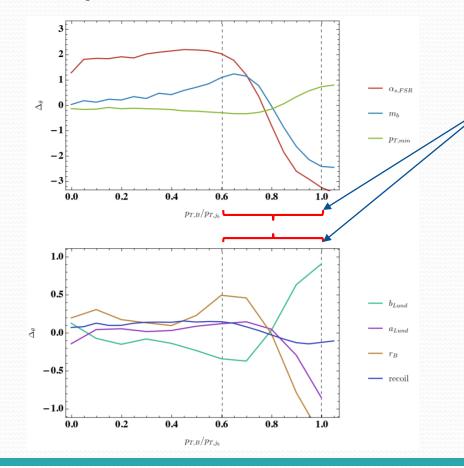

 \Rightarrow A pseudo-inverse procedure [Penrose, Todd (1955); Dresden (1920)] and a singular value decomposition are needed for the analysis.

Combined Constraining Power: Result

Resulting singular values:

(1.7, 0.26, 0.048, 0.0075, 0.0050, 0.0033, 0.0014

 \Rightarrow Two linear combinations of parameters may be constrained, in practice.


Figure 5: Angular distance between the directions in parameter space pointed by the rows of Table in the previous slide.

Most observables contain/access "similar" information ↓ Alternative approaches motivated ⇒ Differential constraining power

Doojin Kim, CERN

Differential Constraining Power

□ Study on the bin counts of a subset of the calibration observables.

FWHM to compute Mellin moments in previous slides \Rightarrow **averaging out** sensitivities to parameters

LHC Top Working Group Meeting

Selected Observables

O	Range	N_{bins}
ho(r)	00.4	16
$p_{T,B}/p_{T,j_b}$	00.99	11
E_B/E_ℓ	0.05-4.55	9
$\chi_B \left(E_{j_b} + E_{\bar{j}_b} \right)$	02.	10
$m_{BB}/m_{j_b j_{ar b}}$	00.998	11
$ \Delta R(BB) - \Delta R(j_b j_{\bar{b}}) $	00.288	9

Observables showing the greatest sensitivities in the absolute sense and the most distinct dependence on linearly independent combinations of Monte Carlo parameters

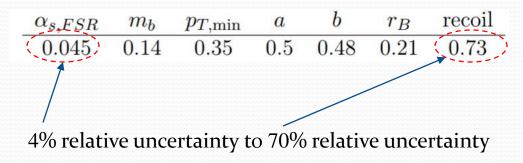
Differential Constraining Power: Results

 $\square p_{T,B}/p_{T,i_b}$: the best single set of differential constraining power

Singular values: 7.0, 1.8, 0.28, 0.11, 0.11, 0.037, 0.018

Improved a lot Not yet enough

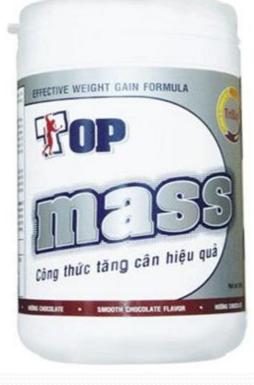
Combined differential constraining power


Singular values: 15.0, 4.2, 0.75, 0.42, 0.27, 0.16, 0.13

Input observables measured at ~1% \Rightarrow 10% constraining

on the most loosely constrained parameter combination

Implications on Constraining Parameters


□ From the standard covariance matrix analysis, and assuming input observables measured at the level of 1% precision we find

□ 0.1% precision (achievable at the HL-LHC if considering purely statistical uncertainties) ⇒
 will achieve 0.4% to 7% relative uncertainties!

Conclusions

- Different methods for top quark mass measurement: the more the messier? the more the merrier?!
 - Different sensitivity to systematics, complementary to one another, good exercise for BSM scenarios
- ❑ We, for the first time, performed a systematic study on *B*-hadron observable methods and potential impact of Pythia parameters on them.
 - ♦ Non-jetty nature ⇒ free from JES
 - Most sensitive to α_s^{FSR}, so a better "tune" reduces the theoretical uncertainty of top mass in *B*-hadron observables. (see Pedro's talk and the recent effort in CMS-PAS-TOP-17-013, CMS-PAS-TOP-17-015)
 - Parameters can be, "in-situ", constrained/tuned by calibration observables probing various aspects.
- □ Similar exercises done with HERWIG 6, and HERWIG 7 for future.

Thank you!

"Tuning" of PYTHIA8 Parameters

A study of the sensitivity to the Pythia8 parton shower parameters of $t\bar{t}$ production measurements in pp collisions at $\sqrt{s} = 7$ TeV with the ATLAS experiment at the LHC

The ATLAS Collaboration

Abstract

Various measurements of $t\bar{t}$ observables, performed by the ATLAS experiment in pp collisions at $\sqrt{s} = 7$ TeV, are used to constrain the initial- and final-state radiation parameters of the PYTHIA8 Monte Carlo generator. The resulting tunes are compared to previous tunes to the Z boson transverse momentum at the LHC, and to the LEP event shapes in Z boson hadronic decays. Such a comparison provides a test of the universality of the parton shower model. The tune of PYTHIA8 to the $t\bar{t}$ measurements is applied to the next-to-leading-order generators MadGraph5_aMC@NLO and POWHEG, and additional parameters of these generators are tuned to the $t\bar{t}$ data. For the first time in the context of parton shower tuning in Monte Carlo simulations, the correlation of the experimental uncertainties has been used to constrain the parameters of the Monte Carlo models.

B-hadron Decay

□ Fully reconstructible with tracks

$$\begin{array}{l} J/\psi \mbox{ modes } b \xrightarrow[few 10^{-3}]{} J/\psi + X \xrightarrow[10^{-1}]{} \ell^+ \ell^- + X \\ & \geqslant B_s^0 \to J/\psi \phi \to \mu^- \mu^+ K^- K^+ (1106.4048) \qquad B^0 \to J/\psi K_s^0 \to \mu^- \mu^+ \pi^- \pi^+ (1104.2892) \\ & \geqslant B^+ \to J/\psi K^+ \to \mu^- \mu^+ K^+ (1101.0131, 1309.6920) \qquad \Lambda_b \to J/\psi \Lambda \to \mu^- \mu^+ p \ \pi^- (1205.0594) \\ \hline D \mbox{ modes } \\ & \geqslant B^0 \xrightarrow[3 \times 10^{-3}]{} D^- \pi^+ \xrightarrow[10^{-2}]{} K_s^0 \pi^- \pi^+, B^0 \xrightarrow[3 \times 10^{-3}]{} D^- \pi^+ \xrightarrow[10^{-2}]{} K^- \pi^+ \pi^- \pi^+, \\ & B^0 \xrightarrow[3 \times 10^{-3}]{} D^- \pi^+ \xrightarrow[3 \times 10^{-2}]{} K_s^0 \pi^+ \pi^- \pi^+ \\ & \geqslant B^- \xrightarrow[5 \times 10^{-3}]{} D^0 \pi^- \xrightarrow[4 \times 10^{-2}]{} K^- \pi^+ \pi^-, B^- \xrightarrow[5 \times 10^{-3}]{} D^0 \pi^- \xrightarrow[2 \times 10^{-2}]{} K^- \pi^+ \rho^0 \pi^- \\ & B^- \xrightarrow[5 \times 10^{-3}]{} D^0 \pi^- \xrightarrow[6 \times 10^{-3}]{} K_s^0 \rho^0 \pi^-, B^- \xrightarrow[5 \times 10^{-3}]{} D^0 \pi^- \xrightarrow[5 \times 10^{-3}]{} K^- \pi^+ \rho^0 \pi^- \end{array}$$

Herwig Parameters & Results

	parameter	range	default
Cluster spectrum parameter	PSPLT(2)	0.9 - 1	1
Power in maximum cluster mass	CLPOW	1.8 - 2.2	2
Maximum cluster mass	CLMAX	3.0 - 3.7	3.35
CMW Λ_{QCD}	QCDLAM	0.16 - 2	0.18
Smearing width of <i>B</i> -hadron direction	CLMSR(2)	0.1 - 0.2	0
Quark shower cutoff	VQCUT	0.4 - 0.55	0.48
Gluon shower cutoff	VGCUT	0.05 - 0.15	0.1
Gluon effective mass	RMASS(13)	0.65 - 0.85	0.75
Bottom-quark mass	RMASS(5)	4.6 - 5.3	4.95

Table 2: HERWIG 6 parameters under consideration and ranges of their variation.

0	$\Delta_{m_t}^{(\mathcal{M}_{\mathcal{O}})}$		$\Delta_{ heta}^{(m_t)}$									
	Δ_{m_t}	PSPLT	QCDLAM	CLPOW	$\mathrm{CLSMR}(2)$	CLMAX	RMASS(5)	RMASS(13)	VGCUT	VQCUT		
$m_{B\ell, \text{true}}$	0.52	0.036(4)	-0.008(2)	-0.007(5)	0.002(3)	-0.007(4)	0.058(1)	0.06(5)	0.003(1)	-0.003(3)		
$p_{T,B}$	0.47	0.072(1)	-0.03(9)	-0.02(7)	0.0035(5)	-0.03(5)	0.11(9)	0.12(5)	0.0066(2)	-0.006(5)		
E_B	0.43	0.069(7)	-0.026(7)	-0.017(5)	0.0038(9)	-0.01(2)	0.12(1)	0.12(2)	0.006(2)	-0.007(5)		
E_{ℓ}	0.13	0.0005(5)	-0.04(3)	0.04(2)	-0.0002(2)	-0.004(4)	0.008(3)	0.008(2)	-0.002(5)	0.008(2)		