Simultaneous extraction of m_t and α_s from differential $t\bar{t}$ distributions

A. Cooper-Sarkar M. Czakon M. A. Lim A. Mitov A. Papanastasiou

Work in progress—results preliminary

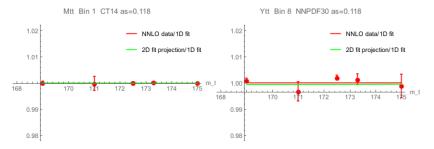
Simultaneous extraction of m_t and α_s from differential $t\bar{t}$ distributions

- ▶ 8 TeV data from ATLAS and CMS collected in Run 1
- Differential distributions of tops reconstructed from lepton+jets analyses, common binning
- ► Transverse momentum p_t^T , invariant mass $M_{t\bar{t}}$, single and pair rapidities $y_t, y_{t\bar{t}}$
- Absolute and normalised distributions—separate data sets from ATLAS, only normalised from CMS (absolute inferred)

Fit methodology

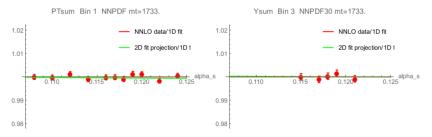
Least squares extraction for normalised and absolute distributions

$$\begin{aligned} \zeta_i &= \zeta_i^{\text{data}} - \zeta_i^{\text{theory}} \\ \chi_{\text{norm}}^2 &= \frac{1}{(N_{\text{data}} - 1)} \sum_{i,j=1}^{N_{\text{data}} - 1} \zeta_i C_{ij}^{-1} \zeta_j + \frac{(\sigma_{\text{NNLO}} - \sigma_{\text{data}})^2}{\delta \sigma_{\text{data}}^2} \\ \chi_{\text{abs}}^2 &= \frac{1}{N_{\text{data}}} \sum_{i,j=1}^{N_{\text{data}}} \zeta_i C_{ij}^{-1} \zeta_j \end{aligned}$$


- ► Measured values of σ_{tt̄} taken from separate 8 TeV ATLAS/CMS measurements ¹
- ► Theory values of σ_{tt} calculated using top++2.0 at NNLO with NNLL resummation of soft gluons

¹1406.5375,1603.02303

Theory input


- For each distribution, need differential cross section in each bin as a function of α_s, m_t
- Precompute each bin weight on a grid of α_s, m_t and interpolate parameter dependence
- \blacktriangleright $\alpha_{\rm s}$ dependence determined by PDF set, so procedure needs to be done for each choice
- Possible through use of FastNLO tables for values of m_t = {169.0, 171.0, 172.5, 173.3, 175.0} GeV
- 3 sets chosen, NNPDF3.0, NNPDF3.1, CT14
- Different parametrisations chosen for each distribution, PDF choice

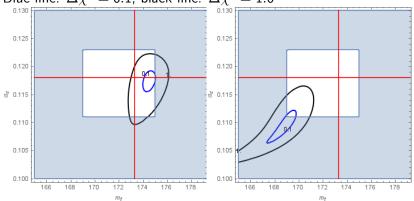
Assessing fit quality

- Factorised form taken for 2D parametrisation, $f(\alpha_s, m_t) = g(\alpha_s)h(m_t)$
- Points removed and fit redone to ensure no overfitting

Assessing fit quality

- Factorised form taken for 2D parametrisation, $f(\alpha_s, m_t) = g(\alpha_s)h(m_t)$
- Points removed and fit redone to ensure no overfitting

イロト イポト イヨト イヨト

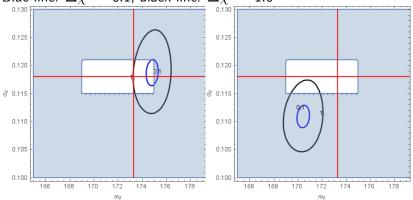

3

6/24

Results: p_t^T

CT14, normalised results

White region: interpolated, blue region: extrapolated Blue line: $\Delta\chi^2 = 0.1$, black line: $\Delta\chi^2 = 1.0$

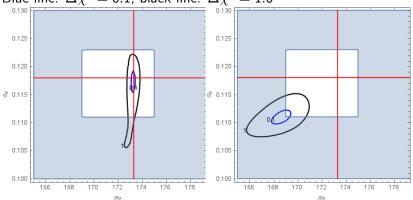


	ATLAS			CMS					
	α_s	m _t	$\chi^2_{\rm min}$	α_s	m _t	$\chi^2_{\rm min}$			
p_T^t	0.1175	174.5	0.50	0.1096	168.9	0.71	≣ ►	100	୬ <

Results: p_t^T

NNPDF3.0, normalised results

White region: interpolated, blue region: extrapolated Blue line: $\Delta \chi^2 = 0.1$, black line: $\Delta \chi^2 = 1.0$

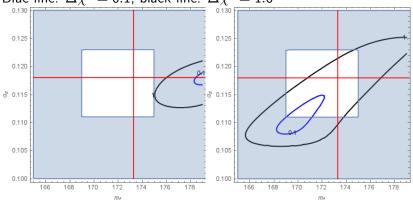


	ATLAS							
	α_s	m _t	$\chi^2_{\rm min}$	α_s	m _t	$\chi^2_{\rm min}$		
p_T^t	0.1187	174.9	0.46	0.1108	170.5	0.68	≣ ▶	୬

Results: $M_{t\bar{t}}$

CT14, normalised results

White region: interpolated, blue region: extrapolated Blue line: $\Delta \chi^2 = 0.1$, black line: $\Delta \chi^2 = 1.0$

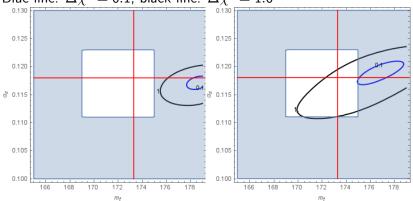


	ATLAS			CMS					
	α_s	m _t	$\chi^2_{\rm min}$	α_s	m _t	$\chi^2_{\rm min}$			
$M_{t\bar{t}}$	0.1174	173.2	1.23	0.1109	168.7	4.77	≣ ►	2	୬ < ୯ 9 / 24

Results: y_t

CT14, normalised results

White region: interpolated, blue region: extrapolated Blue line: $\Delta\chi^2 = 0.1$, black line: $\Delta\chi^2 = 1.0$



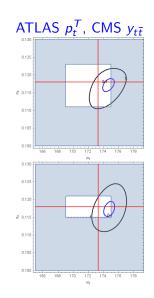
	ATLAS							
	α_s	m _t	$\chi^2_{\rm min}$	α_s	m _t	$\chi^2_{\rm min}$		
y _t	0.1183	179.6	3.35	0.1100	169.6	2.26]≣ ▶	≣ •

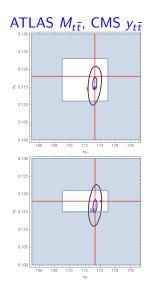
Results: $y_{t\bar{t}}$

CT14, normalised results

White region: interpolated, blue region: extrapolated Blue line: $\Delta \chi^2 = 0.1$, black line: $\Delta \chi^2 = 1.0$

	ATLAS							
	α_s	m _t	$\chi^2_{\rm min}$	α_s	m _t	$\chi^2_{\rm min}$		
<i>Y</i> _t \bar{t}	0.1172	178.6	8.35	0.1191	177.0	1.85	≣ ► :	≣ •⁄) ৭ ৫ 11 / 24


$M_{t\bar{t}}$ distribution fits


- Sensitivity to mass dependence in $M_{t\bar{t}}$ concentrated in first bin
 - Calculations with different m_t will show majority of variation here with tail largely unaffected
- Experimental binning begins at 345 GeV which is above threshold for $m_t < 172.5$ GeV. Leads to missed events for $m_t < 172.5$ GeV.
- ► MC mass 172.5 assumed in published measurements
 - ► For consistent mass extraction, extrapolations with different vales of m_t needed in MC.
- In our calculations, binning is consistent with experimental binning for all values of m_t (i.e. missed events not included).

Combining distributions and experiments

- Would ideally like to combine distributions within experiments, but correlations not currently available
- Combine distributions from ATLAS and CMS assuming no correlations (luminosity?)

$$\begin{split} \chi^2_{\text{norm}} &= \frac{1}{(N_{\text{ATLAS}} + N_{\text{CMS}} - 2)} \left(\sum_{i,j=1}^{N_{\text{ATLAS}} - 1} \zeta_{i,\text{ATLAS}} C_{ij,\text{ATLAS}}^{-1} \zeta_{j,\text{ATLAS}} + \sum_{i,j=1}^{N_{\text{CMS}} - 1} \zeta_{i,\text{CMS}} C_{ij,\text{CMS}}^{-1} \zeta_{j,\text{CMS}} \right) \\ &+ \frac{(\sigma_{\text{NNLO}} - \sigma_{\text{ATLAS}})^2}{\delta \sigma_{\text{ATLAS}}^2} + \frac{(\sigma_{\text{NNLO}} - \sigma_{\text{CMS}})^2}{\delta \sigma_{\text{CMS}}^2} \\ \chi^2_{\text{abs}} &= \frac{1}{(N_{\text{ATLAS}} + N_{\text{CMS}})} \left(\sum_{i,j=1}^{N_{\text{ATLAS}}} \zeta_{i,\text{ATLAS}} C_{ij,\text{ATLAS}}^{-1} \zeta_{j,\text{ATLAS}} + \sum_{i,j=1}^{N_{\text{CMS}}} \zeta_{i,\text{CMS}} C_{ij,\text{CMS}}^{-1} \zeta_{j,\text{CMS}} \right) \end{split}$$

CT14

NNPDF3.0

Best fit values

In light of differences, consider best quality results satisfying

- Fit quality requirement $\chi^2 \leq 1.8$
- ► Restrict $0.115 \le \alpha_s \le 0.120$ and $170.0 \le m_t \le 175.0$ GeV $(\pm \sim 3\sigma \text{ around world average})$

CT14				NNPDF3.0			
ATLAS	CMS	α_s	mt	$\chi^2_{\rm min}$	α_s	mt	$\chi^2_{\rm min}$
p_T^t	У _t ī	$0.1172^{+0.0044}_{-0.0058}$	$174.7^{+2.2}_{-2.2}$	1.33	$0.1173^{+0.0066}_{-0.0061}$	$174.7^{+2.2}_{-2.1}$	0.78
M _{tī}	У _t ī	$0.1161^{+0.0048}_{-0.0060}$	$173.3^{+0.9}_{-0.8}$	1.80	$0.1166^{+0.0060}_{-0.0056}$	$173.3^{+0.9}_{-0.8}$	1.36

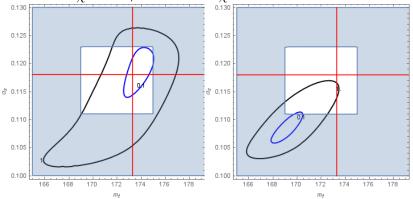
Conclusions

- 8 TeV ATLAS, CMS data compared to NNLO theory to extract α_s, m_t simultaneously
- Find noticeable differences between
 - ATLAS and CMS
 - Different PDF choices
 - Different distributions

indicating large sensitivity to all factors—data, PDF and kinematics

- In order to perform extraction,
 - Impose a cut-off of acceptable χ^2 values at 1.8
 - ▶ Restrict $0.115 \le \alpha_s \le 0.120$ and $170.0 \le m_t \le 175.0$ GeV (± ~ 3 σ around world average)

Conclusions

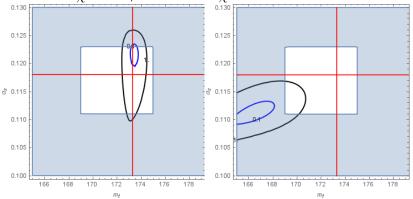

- Combining ATLAS and CMS generally results in better χ², less variation between PDFs
- Absolute distributions give better χ^2 but larger errors
- Find consistency between PDFs for ATLAS p_t^T or M_{tt} combined with CMS y_{tt}
- Need correlations for best extraction
- Results available publically with paper or on request

Back-up slides

<ロト < 部 > < 言 > < 言 > こ き < こ > こ の Q (~ 18/24 Results: p_t^T

CT14, absolute results

White region: interpolated, blue region: extrapolated Blue line: $\Delta \chi^2 = 0.1$, black line: $\Delta \chi^2 = 1.0$

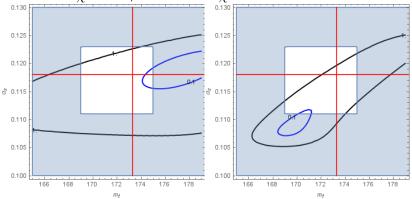


・ロ ・ ・ 日 ・ ・ 目 ・ 1 目 ・ 1 目 ・ 1 日 ・ 1 日 ・ 1 日 ・ 1 日 ・ 1 日 ・ 1 日 / 2 4

Results: $M_{t\bar{t}}$

CT14, absolute results

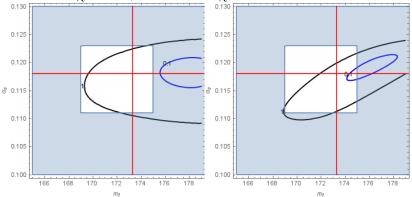
White region: interpolated, blue region: extrapolated Blue line: $\Delta \chi^2 = 0.1$, black line: $\Delta \chi^2 = 1.0$

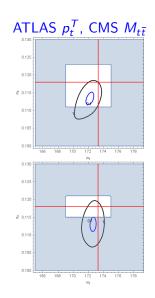


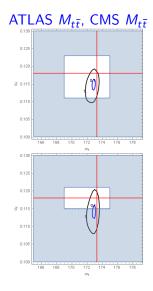
・ロト <
同 ト <
言 ト <
言 ト 、
言 や へ
の へ
の 20 / 24
</p>

Results: y_t

CT14, absolute results

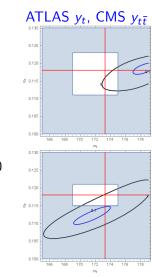

White region: interpolated, blue region: extrapolated Blue line: $\Delta \chi^2 = 0.1$, black line: $\Delta \chi^2 = 1.0$

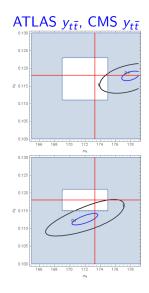



Results: $y_{t\bar{t}}$

CT14, absolute results

White region: interpolated, blue region: extrapolated Blue line: $\Delta\chi^2 = 0.1$, black line: $\Delta\chi^2 = 1.0$





NNPDF3.0

CT14

CT14

NNPDF3.0