Electroweak and subleading corrections in $t\bar{t}$ + jets production

Marek Schönherr

LHC Top WG Meeting

16 May 2018

 $\begin{array}{cccc} t\overline{t} & t\overline{t} + j \\ \text{LO} & \mathcal{O}(\alpha_s^2) & \mathcal{O}(\alpha_s^3) \\ \text{subLO} & \mathcal{O}(\alpha_s\alpha), \mathcal{O}(\alpha^2) & \mathcal{O}(\alpha_s^2\alpha), \mathcal{O}(\alpha_s\alpha^2), \mathcal{O}(\alpha^3) \\ \text{NLO QCD} & \mathcal{O}(\alpha_s^3) & \mathcal{O}(\alpha^4) \\ \text{NLO EW} & \mathcal{O}(\alpha_s^2\alpha) & \mathcal{O}(\alpha^3) \\ \text{all NLO} & \mathcal{O}(\alpha_s\alpha^2), \mathcal{O}(\alpha^3) & \mathcal{O}(\alpha_s^2\alpha^2), \mathcal{O}(\alpha_s\alpha^3), \mathcal{O}(\alpha^4) \end{array}$

 $\begin{array}{cccc} t\overline{t} & t\overline{t} + j \\ \text{LO} & \mathcal{O}(\alpha_s^2) & \mathcal{O}(\alpha_s^3) \\ \text{subLO} & \mathcal{O}(\alpha_s\alpha), \, \mathcal{O}(\alpha^2) & \mathcal{O}(\alpha_s^2\alpha), \, \mathcal{O}(\alpha_s\alpha^2), \, \mathcal{O}(\alpha^3) \\ \text{NLO QCD} & \mathcal{O}(\alpha_s^3) & \mathcal{O}(\alpha_s^4) \\ \text{NLO EW} & \mathcal{O}(\alpha_s^2\alpha) & \mathcal{O}(\alpha_s^3\alpha) \\ \text{all NLO} & \mathcal{O}(\alpha_s\alpha^2), \, \mathcal{O}(\alpha^3) & \mathcal{O}(\alpha_s\alpha^3), \, \mathcal{O}(\alpha^4) \end{array}$

 $\begin{array}{cccc} t\overline{t} & t\overline{t} + j \\ \text{LO} & \mathcal{O}(\alpha_s^2) & \mathcal{O}(\alpha_s^3) \\ \text{subLO} & \mathcal{O}(\alpha_s\alpha), \, \mathcal{O}(\alpha^2) & \mathcal{O}(\alpha_s^2\alpha), \, \mathcal{O}(\alpha_s\alpha^2), \, \mathcal{O}(\alpha^3) \\ \text{NLO QCD} & \mathcal{O}(\alpha_s^3) & \mathcal{O}(\alpha_s^4) \\ \text{NLO EW} & \mathcal{O}(\alpha_s^2\alpha) & \mathcal{O}(\alpha_s^3\alpha) \\ \text{all NLO} & \mathcal{O}(\alpha_s\alpha^2), \, \mathcal{O}(\alpha^3) & \mathcal{O}(\alpha_s^2\alpha^2), \, \mathcal{O}(\alpha^4) \end{array}$

Available calculations - fixed order

tŦ

• NNLO QCD & NLO EW (including all subleading orders)

Czakon et.al. arXiv:1705.04105

 $t\bar{t}+j$

• NLO QCD & NLO EW (including all subleading orders)

Dittmaier, Uwer, Weinzierl hep-ph/0703120; Gütschow, Lindert, MS arXiv:1803.00950

- $t\bar{t} + 2j$
 - NLO QCD

Bevilacqua et.al. arXiv:1108.2851

- $t\bar{t} + 3j$
 - NLO QCD

Höche, Maierhöfer, Moretti, Pozzorini, Siegert arXiv:1607.06934

Contributions with external photons

Process with external photons only in subleading orders

Initial state photons

- photon initiated processes \rightarrow dominated by $g\gamma \rightarrow t\bar{t}$ $\lesssim 1\%$ of incl. xs
- less important at higher collider energies as PDFs then probed at smaller x
- \Rightarrow effects generally not important

Pagani, Tsinikos, Zaro arXiv:1606.01915

Final state photons

- QED bremsstrahlung
 - \rightarrow always present
 - \rightarrow important only in leptonic decays
- γ may be reconstructed as jet
 if not explicitly rejected
 - \rightarrow highly analysis dependent
 - \rightarrow small effect (< 1%)

Available calculations – particle level

NLOPS

• POWHEG, MC@NLO @ NLO QCD for $t\overline{t}$, $t\overline{t} + j$

Frixione, Nason, Webber hep-ph/0305252 Frixione, Nason, Ridolfi arXiv:0707.3088 Kardos, Papadopoulos, Trocsanyi arXiv:1101.2672 Alioli, Moch, Uwer arXiv:1110.5251

Multijet merged

• FxFx $t\bar{t} + 0, 1, 2j$ @ NLO QCD

Frederix, Frixione arXiv:1209.6215

• MEPs@NLO $t\bar{t}$ + 0, 1, 2j @ NLO QCD + 3, 4j @ LO

Höche, Krauss, Maierhöfer, Pozzorini, MS, Siegert arXiv:1402.6293 MEPS@NLO $t\bar{t} + 0, 1j$ @ NLO QCD+EW_{virt} + 2, 3, 4j @ LO

Gütschow, Lindert, MS arXiv:1803.00950

Multijet merged $t\bar{t}$ +jets

Höche, Krauss, Maierhöfer, Pozzorini, MS, Siegert arXiv:1401.7971

Setup

SHERPA+OPENLOOPS

 uses automated framework for general NLO calculations in SHERPA tree-level matrix elements, dipole subtraction, phase space integration, process management

MS arXiv:1712.07975

virtual corrections from OPENLOOPS

Cascioli, Maierhöfer, Pozzorini arXiv:1111.5206

Parameters

- $\mu_{R/F} = \frac{1}{2} \left(E_T^t + E_T^{\overline{t}} \right)$ in fixed-order calculation CKKW scale with $\mu_{core} = \frac{1}{2} \left(\frac{1}{\overline{s}} + \frac{1}{m_t^2 - \hat{t}} + \frac{1}{m_t^2 - \hat{u}} \right)^{-\frac{1}{2}}$ in MEPs@NLO
- NNPDF3.0nnlo $\alpha_s =$ 0.118, neglect γ -induced
- spin-correlated top decays, default tune for underlying event and hadronisation in data comparison

Setup

- SHERPA+OPENLOOPS:
 - $pp \to V + 0, 1, 2(.3)$ jets

FCC report, arXiv:1607.01831 EW report arXiv:1606.02330 LH'15 arXiv:1605.04692

LH'15 arXiv:1605.04692

LH'15 arXiv:1605.04692

Greiner, MS in prep.

Lindert et al arXiv:1705.04664 FCC report, arXiv:1607.01831

Chiesa et.al. arXiv:1706.09022

Greiner, MS arXiv:1710.11514

Kallweit, Lindert, Pozzorini, MS, arXiv:1705.00598 Gütschow, Lindert, MS arXiv:1803.00950

Kallweit, Lindert, Maierhöfer, Pozzorini, MS arXiv:1412.5157, arXiv:1511.08692

- $pp \rightarrow Zi/pp \rightarrow \gamma i$ ratio Kallweit, Lindert, Maierhöfer, Pozzorini, MS arXiv:1505.05704

-
$$\ensuremath{\textit{pp}}\xspace \to \gamma/\ell\ell/\ell\nu/\nu\nu+j$$

-
$$pp \rightarrow Vh$$

- $pp \rightarrow 2\ell 2\nu$

-
$$pp
ightarrow t \overline{t} / t \overline{t} j$$

- $pp \rightarrow t\bar{t}h$
- SHERPA+GOSAM
 - $pp \rightarrow \gamma\gamma + 0, 1, 2$ jets
 - $pp \rightarrow \gamma \gamma \gamma / \gamma \gamma \ell \nu / \gamma \gamma \ell \ell$
 - $pp \rightarrow \gamma \gamma b\bar{b}$
- SHERPA+RECOLA

- $pp \rightarrow V+0, 1, 2$ j, $pp \rightarrow 4\ell$, $pp \rightarrow t\bar{t}h$ Biedermann et.al. arXiv:1704.05783

Top pair production in association with jets

Gütschow, Lindert, MS arXiv:1803.00950

- $pp \rightarrow t\bar{t}$ - LO: $\mathcal{O}(\alpha_s^2)$, $\mathcal{O}(\alpha_s \alpha)$, $\mathcal{O}(\alpha^2)$
 - include NLO corrections to subleading orders
- $pp \rightarrow t\bar{t}j$ - LO: $\mathcal{O}(\alpha_s^3)$, $\mathcal{O}(\alpha_s^2\alpha)$, $\mathcal{O}(\alpha_s\alpha^2)$, $[\mathcal{O}(\alpha^3)]$
 - include NLO corrections to subleading orders

Gütschow, Lindert, MS arXiv:1803.00950

Top pair production in association with jets

NLO EW factorises from additional jet activity

Top pair production in association with jets

subleading orders important

Gütschow, Lindert, MS arXiv:1803.00950

Top pair production in association with jets

Gütschow, Lindert, MS arXiv:1803.00950

Conclusions

NLO EW corrections to $t\bar{t}$ at 8 and 13 TeV

gg channel receives smaller EW corrections in Sudakov limit than qq̄ channel, at 1 TeV:

 $\delta^{q\bar{q}}_{\mathrm{EW,sud}} pprox 1.5 \, \delta^{gg}_{\mathrm{EW,sud}}$

- composition of total from gg vs $q\bar{q}$ channels changes
 - \rightarrow NLO EW correction changes
 - \rightarrow effect still small

NLO EW corrections to $t\bar{t}$ at 8 and 13 TeV

- incorporate approximate electroweak corrections in SHERPA's NLO QCD multijet merging (MEPS@NLO)
- modify MC@NLO B-function to include NLO EW virtual corrections and integrated approx. real corrections

$$\overline{\mathrm{B}}_{n,\mathsf{QCD}+\mathsf{EW}_{\mathsf{virt}}}(\Phi_n) = \overline{\mathrm{B}}_{n,\mathsf{QCD}}(\Phi_n) + \mathrm{V}_{n,\mathsf{EW}}(\Phi_n) + \mathrm{I}_{n,\mathsf{EW}}(\Phi_n) + \mathrm{B}_{n,\mathsf{mix}}(\Phi_n)$$

- real QED radiation can be recovered through standard tools (parton shower, YFS resummation)
- simple stand-in for proper QCD+EW matching and merging
 → validated at fixed order, found to be reliable,
 diff. < 5% for observables not driven by real radiation

- incorporate approximate electroweak corrections in SHERPA's NLO QCD multijet merging (MEPS@NLO)
- modify MC@NLO B-function to include NLO EW virtual corrections and integrated approx. real corrections

$$\overline{\mathrm{B}}_{n,\mathsf{QCD}+\mathsf{EW}_{\mathsf{virt}}}(\Phi_n) = \overline{\mathrm{B}}_{n,\mathsf{QCD}}(\Phi_n) + \mathrm{V}_{n,\mathsf{EW}}(\Phi_n) + \mathrm{I}_{n,\mathsf{EW}}(\Phi_n) + \mathrm{B}_{n,\mathsf{mix}}(\Phi_n)$$
exact virtual contribution

- real QED radiation can be recovered through standard tools (parton shower, YFS resummation)
- simple stand-in for proper QCD+EW matching and merging
 → validated at fixed order, found to be reliable,
 diff. ≤ 5% for observables not driven by real radiation

- incorporate approximate electroweak corrections in SHERPA's NLO QCD multijet merging (MEPS@NLO)
- modify MC@NLO B-function to include NLO EW virtual corrections and integrated approx. real corrections

$$\overline{\mathrm{B}}_{n,\mathsf{QCD}+\mathsf{EW}_{\mathsf{virt}}}(\Phi_n) = \overline{\mathrm{B}}_{n,\mathsf{QCD}}(\Phi_n) + \mathrm{V}_{n,\mathsf{EW}}(\Phi_n) + \mathrm{I}_{n,\mathsf{EW}}(\Phi_n) + \mathrm{B}_{n,\mathsf{mix}}(\Phi_n)$$
exact virtual contribution
approximate integrated real contribution

- real QED radiation can be recovered through standard tools (parton shower, YFS resummation)
- simple stand-in for proper QCD+EW matching and merging
 → validated at fixed order, found to be reliable,
 diff. ≤ 5% for observables not driven by real radiation

- incorporate approximate electroweak corrections in SHERPA's NLO QCD multijet merging (MEPS@NLO)
- modify MC@NLO $\overline{\rm B}\text{-function}$ to include NLO EW virtual corrections and integrated approx. real corrections

optionally include subleading Born

$$\overline{\mathrm{B}}_{n,\mathrm{QCD}+\mathrm{EW}_{\mathrm{virt}}}(\Phi_n) = \overline{\mathrm{B}}_{n,\mathrm{QCD}}(\Phi_n) + \mathrm{V}_{n,\mathrm{EW}}(\Phi_n) + \mathrm{I}_{n,\mathrm{EW}}(\Phi_n) + \mathrm{B}_{n,\mathrm{mix}}^{\dagger}(\Phi_n)$$

exact virtual contribution

approximate integrated real contribution

- real QED radiation can be recovered through standard tools (parton shower, YFS resummation)
- simple stand-in for proper QCD+EW matching and merging
 → validated at fixed order, found to be reliable,
 diff. < 5% for observables not driven by real radiation

- incorporate approximate electroweak corrections in SHERPA's NLO QCD multijet merging (MEPS@NLO)
- modify MC@NLO $\overline{\rm B}\text{-function}$ to include NLO EW virtual corrections and integrated approx. real corrections

optionally include subleading Born

$$\overline{\mathrm{B}}_{n,\mathrm{QCD}+\mathrm{EW}_{\mathrm{virt}}}(\Phi_n) = \overline{\mathrm{B}}_{n,\mathrm{QCD}}(\Phi_n) + \mathrm{V}_{n,\mathrm{EW}}(\Phi_n) + \mathrm{I}_{n,\mathrm{EW}}(\Phi_n) + \mathrm{B}_{n,\mathrm{mix}}^{\mathsf{T}}(\Phi_n)$$

exact virtual contribution

approximate integrated real contribution

- real QED radiation can be recovered through standard tools (parton shower, YFS resummation)
- simple stand-in for proper QCD+EW matching and merging
 → validated at fixed order, found to be reliable,
 - diff. $\lesssim 5\%$ for observables not driven by real radiation

Results: $t\bar{t} + jets$

reproduces well the corrections seen at fixed-order

Results: $t\bar{t}$ + jets at high p_{T}

Gütschow, Lindert, MS arXiv:1803.00950

- $pp \rightarrow t\bar{t} + 0, 1j$ @NLO + 2, 3, 4j@LO
- additional LO multiplicities inherit electroweak corrections through MENLOPS differential *K*-factor Wähe Krung MS Signet

Höche, Krauss, MS, Siegert arXiv:1009.1127

improved description of data

Conclusions

- $t\bar{t}$ and $t\bar{t}+j$ now known at NLO for all contributing orders $\mathcal{O}(\alpha_s^n \alpha^m)$
- inclusion of approximate EW corrections in MEPS@NLO available including important contributions from subleading orders
- improves data description for boosted top quarks already at 8 TeV
- publically available in SHERPA-2.2.5

http://sherpa.hepforge.org

Thank you for your attention!