TOWARDS REVIVING THE PS NEUTRINO

BEAM: WHAT IT REALLY INVOLVES ...

Rende Steerenberg BE-OP

Contents

- The Experiment: aim, lay-out & needs
- The Infrastructure
- PS Proton Beam Production Schemes
- Preliminary Ideas on the Proton Beam Line
- Target System and Decay Tube
- Work packages for Possible Project
- Concluding Remarks

- The Experiment: aim, lay-out & needs
- The Infrastructure
- PS Proton Beam Production Schemes
- Preliminary Ideas on the Proton Beam Line
- Target System and Decay Tube
- Work packages for Possible Project
- Concluding Remarks

Abstract of the Letter of Intent:

<u>By C. Rubbia et al.</u>

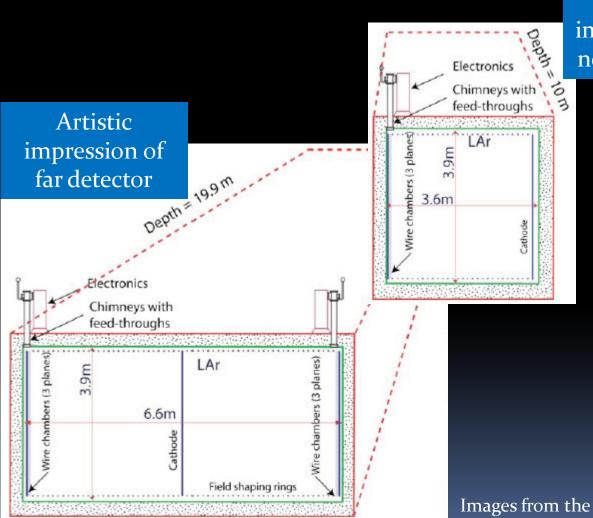
The LNSD experiment at LANSCE has observed a strong 3.8 σ excess of \overline{ve} events from an $\overline{v\mu}$ beam coming from pions at rest. If interpreted as due to neutrino oscillations, it would correspond to a mass difference much larger and inconsistent with the mass-squared differences required by the standard atmospheric and long-baseline neutrino experiments. Therefore, if confirmed, the LNSD anomaly would imply new physics beyond the standard model, presumably in the form of some additional sterile neutrinos......

• Aim:

Investigating the existence of sterile neutrinos through the measurement of $\nu\mu \rightarrow \nu e$ oscillations by using a low energy $\nu\mu$ or $\nu\mu$ beam in combination with a close and far liquid argon time projection chamber.

Is there a 4th type

The Proposed Experimental Lay-out


THE

12711

- 850 m Re-use the old TT₇ tunnel and cavern to house primary beam line and target station
- 10t liquid argon TPC near detector in building 181
- <u>500t liquid argon TPC far detector in building 191</u>

Liquid Argon TPC (LAr-TPC)

Artistic impression of near detector

Inside photo of drift region of T600 LAr-TPC the TPC Drift Length (1.5 m Cathodi Iduring installation

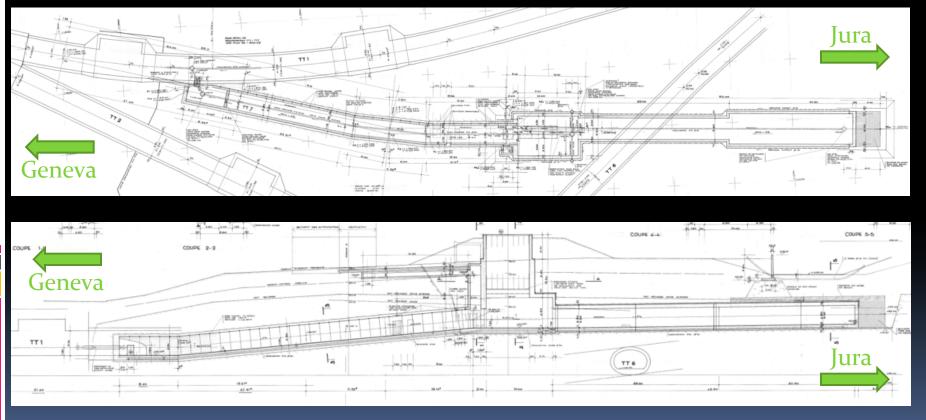
Images from the Letter of Intent, C. Rubbia et al.

PS NEUTRINO BEAM

THE

TOWARDS REVIVING

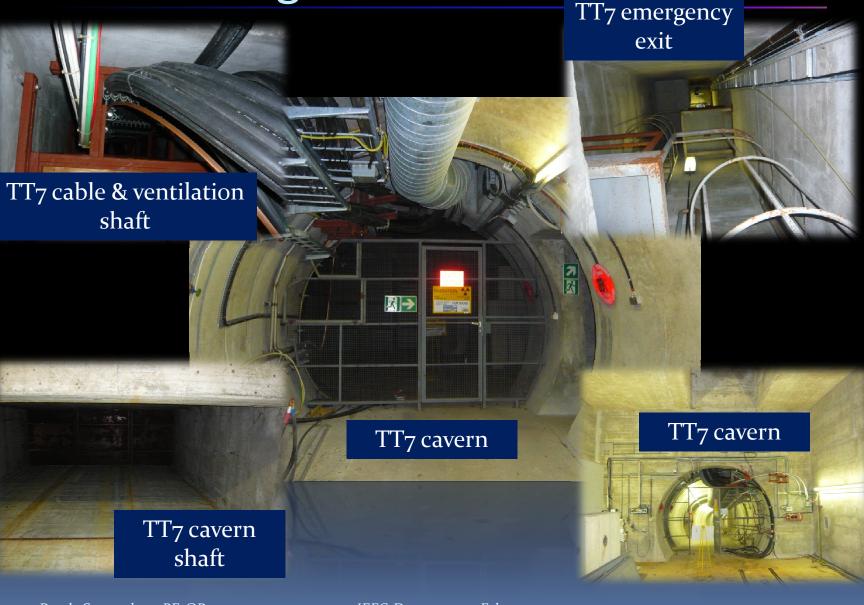
PS NEUTRINO BEAM THE

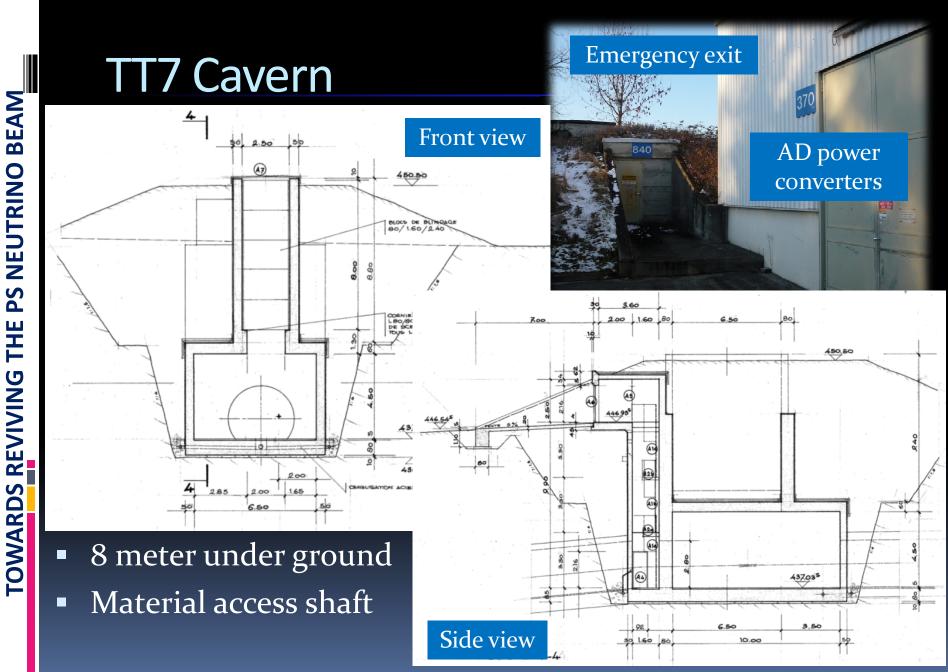

The Experimental requirements

- There are few, but some challenging, requirements:
 - Integrate 1.25 x 10²⁰ p.o.t. per year (2 years)
 - Primary proton beam momentum of ~ 19 GeV/c
 - The proton beam hitting the target should be more or less parallel and interact with a target of ~ 6 mm diameter
 - Secondary beam production (low energy v_{μ} beam), focusing and measurement

- The Experiment: aim, lay-out & needs
- <u>The Infrastructure</u>
- PS Proton Beam Production Schemes
- Preliminary Ideas on the Proton Beam Line
- Target System and Decay Tube
- Work packages for Possible Project
- Concluding Remarks

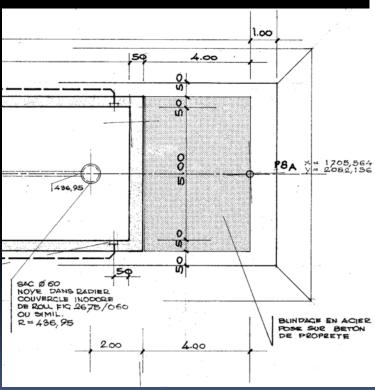
The TT7 Tunnel

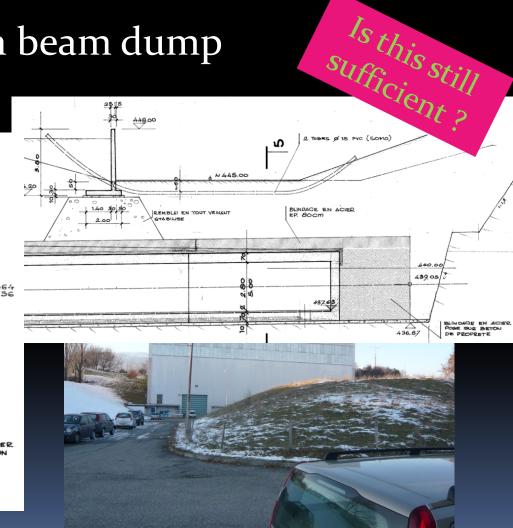

The TT₇ tunnel was used in the past for neutrino oscillation experiments (PS180, BEBC in early 80's)



The TT7 tunnel toward the target

The TT7 Target Cavern

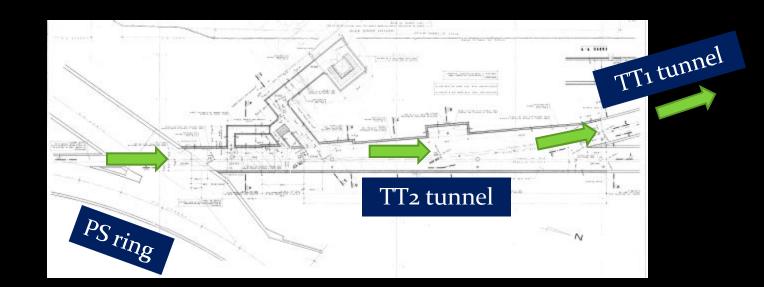




IEFC-Days 2010 - 11 February 2010

Beam dump / hadron stopper

- 4 meter thick iron beam dump
- 65 meter of earth



Present status of the TT1/TT7

- The TT1 tunnel is rather humid and is used as storage for radio-active cables.
 - Separation and disposal project is being planned, but will most probably not start before 2014
- TT7 tunnel and cavern are in very good shape
- TT7 decay tunnel is full with radioactive waste, which need to be treated and disposed (under consideration)

How to go from PS to TT7?

- The Experiment: aim, lay-out & needs
- The Infrastructure
- <u>PS Proton Beam Production Schemes</u>
- Preliminary Ideas on the Proton Beam Line
- Target System and Decay Tube
- Work packages for Possible Project
- Concluding Remarks

Required Integrated Intensity Planning

- Experimental requirement 2.5 x 10²⁰ p.o.t. in 2 years
- Assume that the super cycles are similar to the present ones:
 - Daytime (10 hrs): 39 bp, 46.8 seconds (1xFT, 4xCNGS, 1xMD)
 - Night-time (14 hrs): 33 bp, 39.6 seconds (1xFT, 4xCNGS)
- Possible intensity per cycle: 3 x 10¹³ protons
- Assuming we run 180 days per year, then this would require 12 cycles of 1 bp for an average super cycle length of 36 bp, 43.2 seconds (i.e. 33% duty cycle)
- This place is at present not available in the super cycle.

Possible evolution of super cycles

- The DIRAC experiment (PS212) mentioned in an SPSC presentation to have plans to move to the SPS after 2011
 - Presentation at SPSC 16 April 2009:
 - http://cdsweb.cern.ch/record/1172364/files/SPSC-SR-045.pdf
 - They occupy until present 10 bp's in the day and night super cycles
 - However, this would only liberate 5 bp's in the PSB, keeping the ISOLDE duty cycle unchanged
- nTOF requires an increase in number of integrated protons per year and thus number of cycles per super cycle

Assumption for Possible Scenario

- Assume the following:
 - Similar super cycles than at present
 - No EASTB (DIRAC/PS212)
 - Keep ISOLDE duty cycle unchanged
 - Anticipate request for increase of nTOF protons
 - 180 days of physics run per year
 - Machine availability is not taken into account
 - POPS operational
- This would give 7 cycles per super cycles, day and night to be shared between nTOF and TT7

nTOF Cycle and Beam

- The dedicated nTOF cycle produces 1 bunch of 7x1012 protons on harmonic 8
- This bunch is shortened from ~ 50 ns to < 25 ns and fast extracted to the nTOF target
- The 7 remaining buckets are not used
- They could potentially be used for the TT7 neutrino experiment
- This way I cycle is efficiently used to share beam between the nTOF and TT7 neutrino experiments.

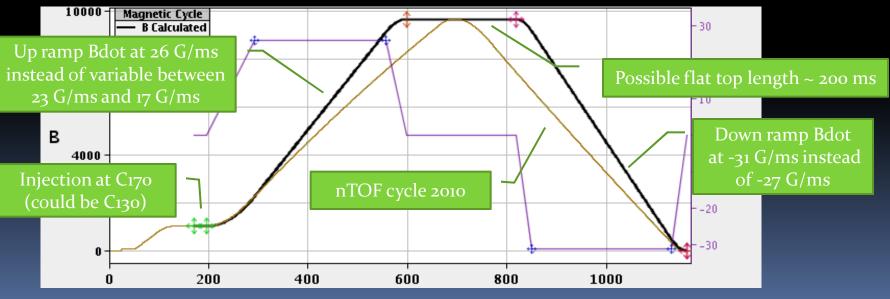
nTOF & TT7 Cycle sharing Proposal

- Accelerate 3x10¹³ protons in 8 bunches on harmonic 8 up to 20 GeV/c
 - Resulting in 3.75x10¹² protons per bunch
- TT7 neutrino's:
 - 7 bunches to the TT7 neutrino target
 - Resulting in 2.63x10¹³ p.o.t. per cycle
- nTOF:
 - I bunch to nTOF target
 - Resulting in 3.75x10¹² p.o.t. per cycle

Possible yearly integrated intensities

- Under the assumed conditions PS could provide:
 - 7 cycles per s.c. sharing beam for TT7 & nTOF
 - 4 parasitic nTOF cycles per s.c.
- nTOF part:
 - Total integrated intensity of 1.34x10¹⁹ p.o.t./yr
 - This is 84% more than committed in 2009
 - Note: if no sharing nTOF would get 200% more
- TT7 neutrino part:
 - Total integrated intensity of 6.7x10¹⁹ p.o.t./yr
 - This would require 3.7 runs to obtain 2.5x10²⁰ p.o.t.

Two Beam sharing options


- For sharing the nTOF and TT7 beam there are two options:
 - **1.** Single extraction of 8 bunches
 - Requires (expensive) kicker/septum in TT2
 - All bunches would see bunch rotation required for nTOF bunch
 - 2. Double batch extraction
 - Requires modifying the extraction element power supplies to pulse twice
 - Required fast switching magnet in TT2
 - 7 non shortened bunches for TT7
 - I shortened bunch for nTOF

Single Batch Extraction Scheme

- Present TOF cycle can be used:
 - 3x10¹³ protons on harmonic 8 and single fast extraction is fairly standard and clean
 - TT₇ will also receive short bunches (large dp/p)
- Kicker and (outside vacuum) septum to be developed
- Maximum TT2 line kicker rise time <200 ns
- More complicated implementation in TT2

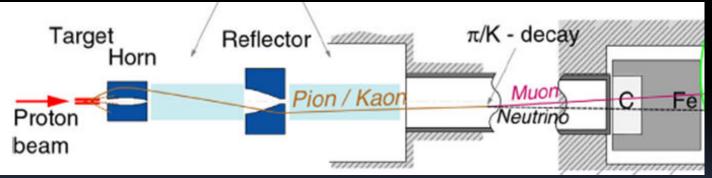
Double batch Extraction scheme

- At present the nTOF cycle flat top is too short for the proposed double batch extraction.
 - POPS will allow increase of Bdot and to maintain it constant during the ramp
 - New MPS regulation allows earlier injection by ~ 40 ms
- This results in the following magnetic cycle:

Double Batch Extraction Requirements

- The extraction elements need to be able to pulse twice within ~ 200 ms interval:
 - Extraction bump
 - Requires (adding capacitors, switch and timing)
 - Kick enhancement quadrupoles.
 - Requires (adding capacitors, switch and timing)
 - Extraction septum
 - Requires (adding entire power converter)
 - Additional studies and tests on magnet to be done
 - Extraction kicker
 - The possibility to kick twice on the same flat top with minimum 30 ms interval is already available

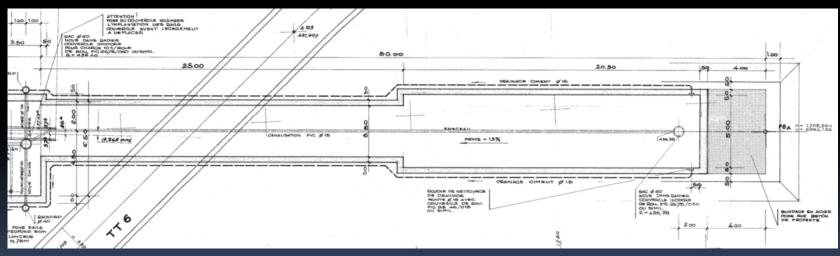
- The Experiment: aim, lay-out & needs
- The Infrastructure
- PS Proton Beam Production Schemes
- Preliminary Ideas on the Proton Beam Line
- Target System and Decay Tube
- Work packages for Possible Project
- Concluding Remarks


PS to TT7 Transfer Line

- Drawing of old TT7 line are available
 - ~ 14 Main Dipoles
 - ~ 12 Quadrupoles
 - ~ 4 Corrector Dipoles
- TT2 situation has changed since then
- Do we opt for Kicker/Septum or fast switching magnet ?
- It should contain proton beam intensity, positioning and profile monitors
- Can we re-use magnets or do we need new ones ?
- Beam line (optics) study needed (manpower)

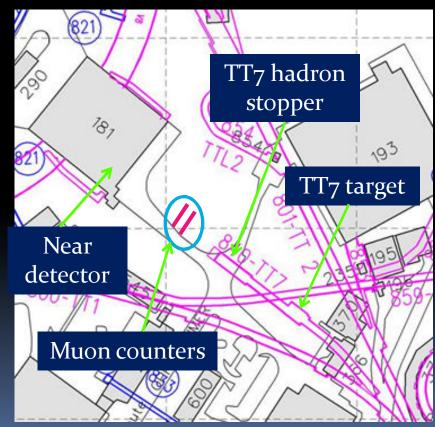
- The Experiment: aim, lay-out & needs
- The Infrastructure
- PS Proton Beam Production Schemes
- Preliminary Ideas on the Proton Beam Line
- Target System and Decay Tube
- Work packages for Possible Project
- Concluding Remarks

Secondary Beam Production


- The required secondary beam should be a low energy v_{μ} beam
 - CNGS uses high energy v_{μ} beam
- Use proven CNGS target, horn and reflector technology and scale down by energy
 - CNGS target 450 kW → TT7 target ~ 4 kW

Courtesy of E. Gschwendtner

- Parallel proton beam on target
- Focus secondary beam, using horn and reflector


- The available decay tunnel is 50 meters long
- Cross section:
 - [•] 3.5 x 2.8 m2 for the 1st 25 m
 - 5.0 x 2.8 m2 for the remainder

No (vacuum) decay tube (like CNGS) available

Secondary Beam Measurement

- Installing muon counters after the hadron dump will allow:
 - Monitoring the intensity
 - Measure the distribution
 - Steering with primary beam
 - Target alignment

PS NEUTRINO BEAM

THE

TOWARDS REVIVING

- The Experiment: aim, lay-out & needs
- The Infrastructure
- PS Proton Beam Production Schemes
- Preliminary Ideas on the Proton Beam Line
- Target System and Decay Tube
- Work packages for Possible Project
- Concluding Remarks

Work Packages for a Possible Project (1)

- Primary Proton Beam Production scheme
 - Adapt fast extraction or develop kicker/septum in TT2
 - Power converters and/or Magnets
- PS to TT₇ target transfer line:
 - Vacuum
 - Magnets
 - Collimation
 - Optics
 - Power Converters
 - Beam Instrumentation
 - Controls
 - Radiation protection & shielding

Work Packages for a Possible Project (2)

- Secondary beam production and measurement
 - Target (including cooling, ventilation, target protection and target disposal after use)
 - Pulsed Horn and Reflector
 - Decay Tube
 - Muon counters
 - Radiation protection & shielding
 - Power Converters
- Infra-structure & General services:
 - Cleaning & Consolidating TT1-TT7 Tunnel (waste disposal)
 - Cooling and ventilation
 - Access Control & Personnel Safety System
 - Surface building for power converters, etc.
 - Safety
 - Transport and handling in cavern and TT₇ tunnel

- The Experiment: aim, lay-out & needs
- The Infrastructure
- PS Proton Beam Production Schemes
- Preliminary Ideas on the Proton Beam Line
- Target System and Decay Tube
- Work packages for Possible Project
- <u>Concluding Remarks</u>

Concluding Remarks

- Very exciting physics: discovery of new neutrino flavor ?
- For the moment this is a pre-study and not a project
 - For more detailed studies stronger commitment from CERN management is required (manpower needed)
- TT7 and nTOF beam sharing makes efficient use of PS
 - Neutrino experiment could be completed in 3.7 runs (not 2 years)
- Large part of the required infrastructure is available
- Potential work packages are identified
- Secondary beam production should be inspired on CNGS
- The beam line could be re-used after the experiment for other purposes like target and detector R&D (MERIT), etc.
- Lots of interesting work ahead, but no resources allocated yet: could we get some ?

Acknowledgements

- Francesco Pietropaolo, Paola Sala, Alberto Guglielmi (INFN) for the discussions on the experiment and its requirements
- Ilias Efthymiopoulos for providing the IEFC-days timeslot and the discussions on the neutrino facilities
- Massimo Giovannozzi for sharing his knowledge and documentation on the old TT7 beam line
- David Nisbet for his help on the technical aspects for powering the double extraction scheme
- Jan Borburg for his information on the use of septa for the double and single batch extraction scheme

Thanks for your attention