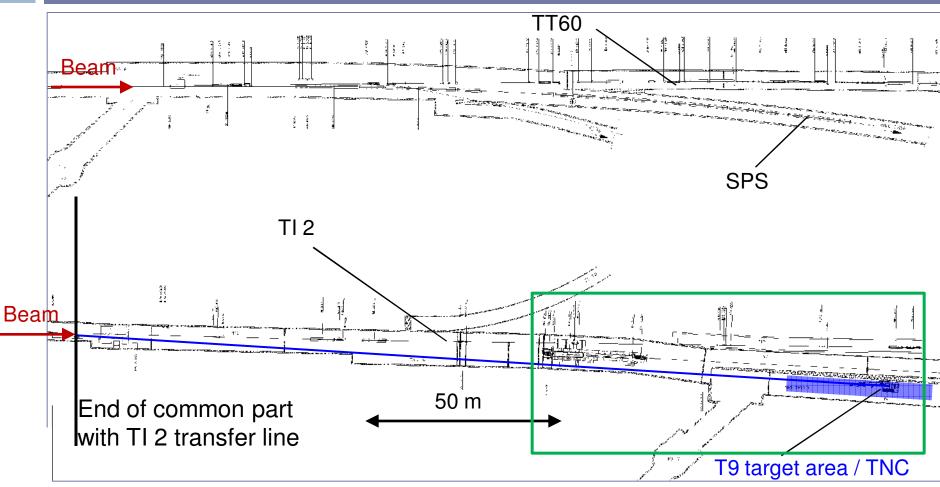
HIGH RADIATION TO MATERIALS PROJECT REPORT

Outline

- □ The HiRadMat facility what is it?
- Project overview
- Status
 - □ WG1 Beam line
 - □ WG2 TNC and T1 dismantling
 - WG3 New irradiation area
- Schedule
- Operation & user's support
- Summary

On behalf of the project team S. Evrard – EN/MEF

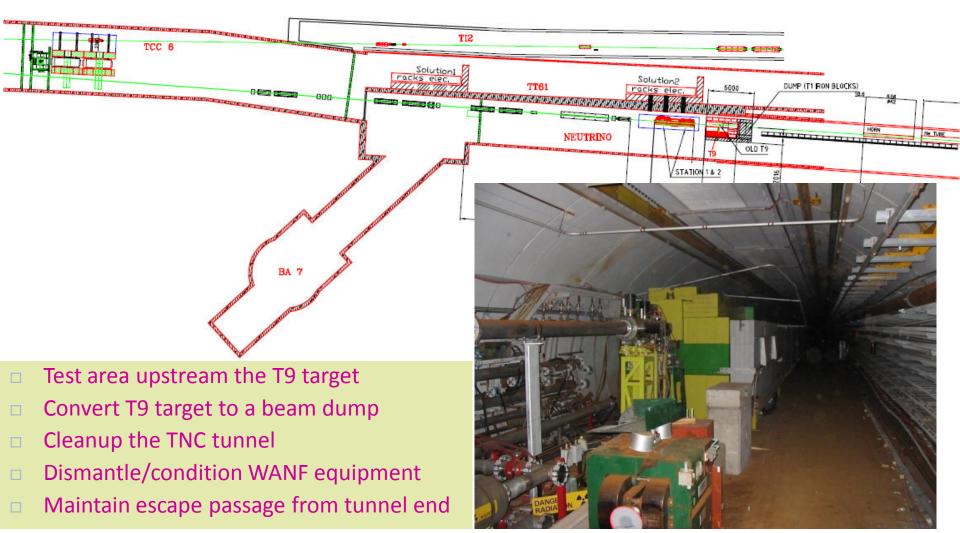
The HiRadMat Facility – What is it ?

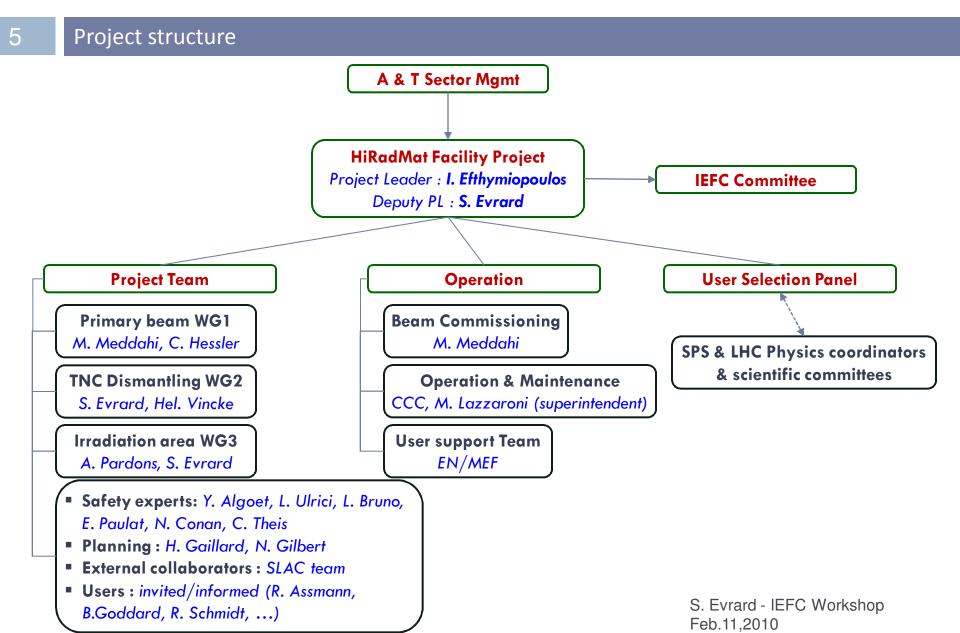

Essential purpose

- □ Study the impact of intense pulsed beams on materials
 - Thermal management (heating)
 - material damage even below melting point
 - material vaporization (extreme conditions)
 - Radiation damage to materials change of properties
 - Thermal shock beam induced pressure waves
- Test bed, important for the design validation of LHC near-beam components before installation in the machine
- □ Requires **LHC-type SPS beam** (450 GeV/c) from **pilot to 288 nominal bunches**
- Foreseen clients : LHC collimators, protection devices, machine components, material studies (bulk, superconductors), high-power targetry, irradiation tests of electronics

The HiRadMat Facility – What is it ?

Location


3

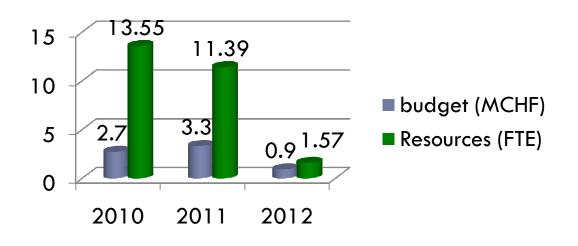

C. Hessler, 26/01/09

The HiRadMat Facility– What is it ?

Irradiation area layout in the TCC6-TNC tunnels

Project Overview

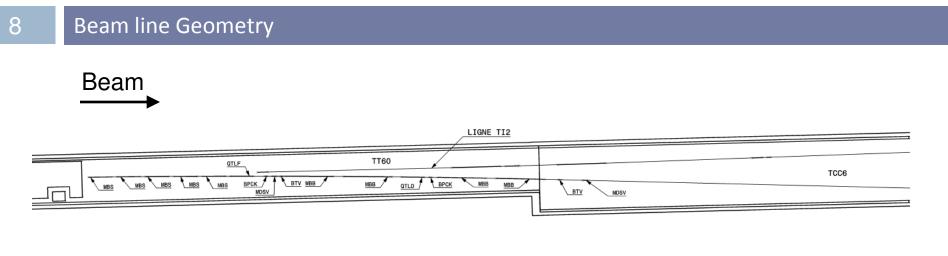
Project Overview

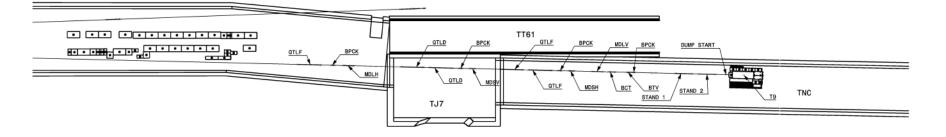

Project budget

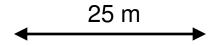
6

- □ The HiRadMat project is important for LHC.
- □ A&T sector based project :
 - -BE: ABP, ASR, BI, CO, OP
 - •EN: CV, EL, HE, MEF, MME, STI
 - •TE: ABT, EPC, MPE, MSC, VSC
 - And DG/SCR, DG/SCG, GS/ASE, GS/SEM, IT/CS
- □ Work packages defined in each WG's in close collaboration with equipment groups.

Thanks to all groups for providing feedback to update the budget and manpower estimate for the project !

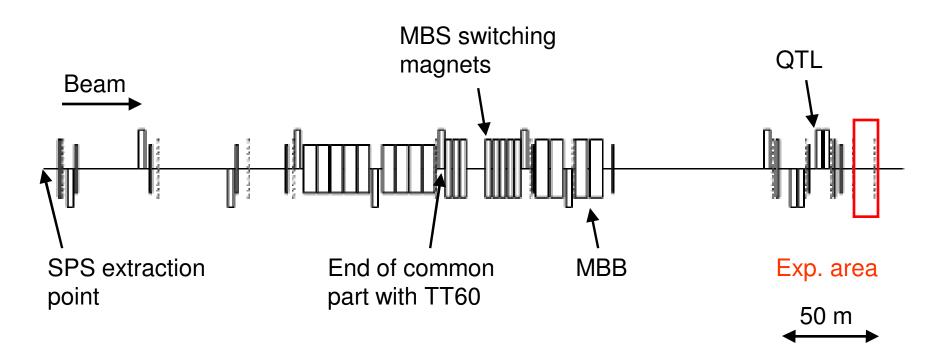

□ 6.9 MCHF and 26 FTE's over 2010, 2011 and 2012

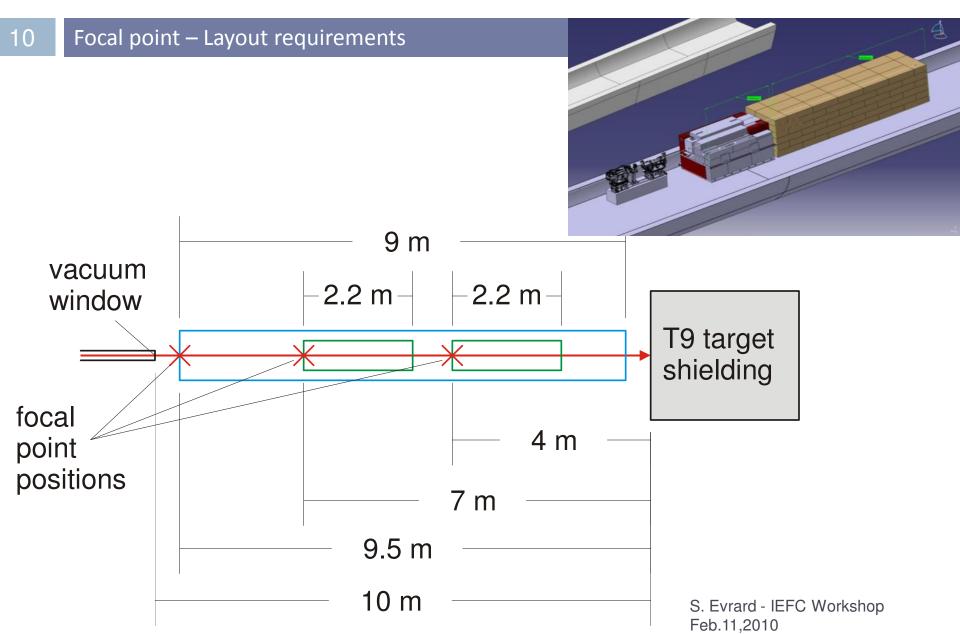



Primary proton/ion beam parameters

Parameter	Protons	Ions					
Beam energy	450 [GeV]	177.4 [AGeV]					
Bunch intensity	5×10 ⁹ to 1.7×10¹¹ [protons]	5×10 ⁹ to 4.1×10 ¹⁰ [ions]					
Number of bunches	1 to 288	52					
Bunch spacing	25 [ns]	≥25 [ns]					
RMS bunch length	11.24 [cm]	11.24 [cm]					
Pulse length	7.2 [μs]	7.2 [μs]					
Transverse norm. emittance (1 σ)	3.5 [µm rad]	1.4 [μm rad]					
RMS beam spot at focal point	1.0 [mm ²] - nominal 0.25 – 4.0 [mm ²] – range	1.0 [mm ²] - nominal 0.25 – 4.0 [mm ²] – range					
RMS beam divergence at focal point	0.2 [mrad]	0.2 [mrad]					
RMS shot-to-shot stability	< 0.2 [mm]	< 0.2 [mm]					
Transverse beam steering at focal point	+/- 4 [mm]	+/- 4 [mm]					
Integrated beam intensity(protons)	10 ¹⁶ protons/year 10 exp.×10 ¹⁵ protons/exp. ~30÷100 extractions/exp						

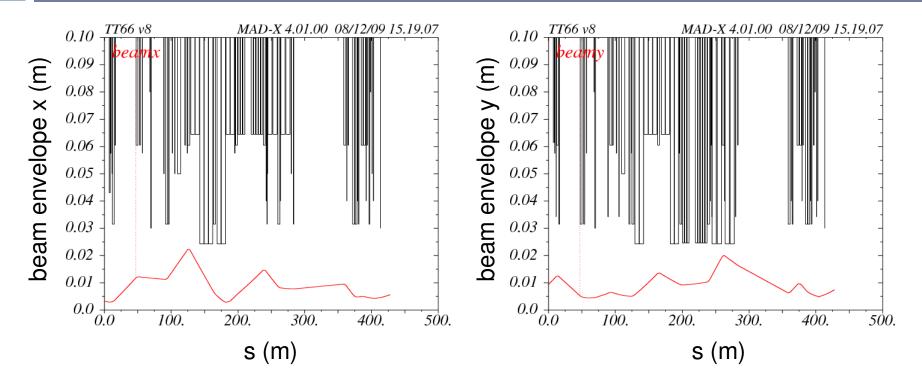
Beam in shared mode during SPS operations



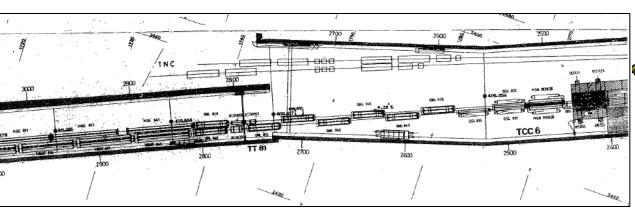


Beam line layout

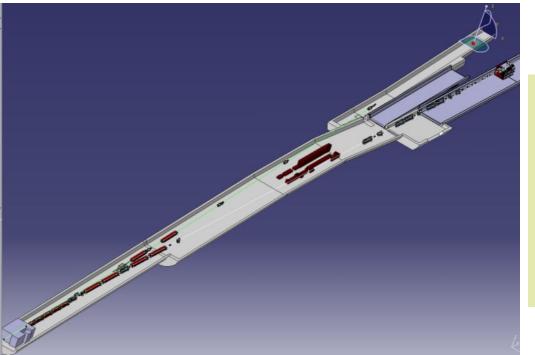
9



- □ Flexible optics to provide beam radii of σ = 0.1 to 2.0 mm at the focal point
- Focal point movable to starting points of the three test stands

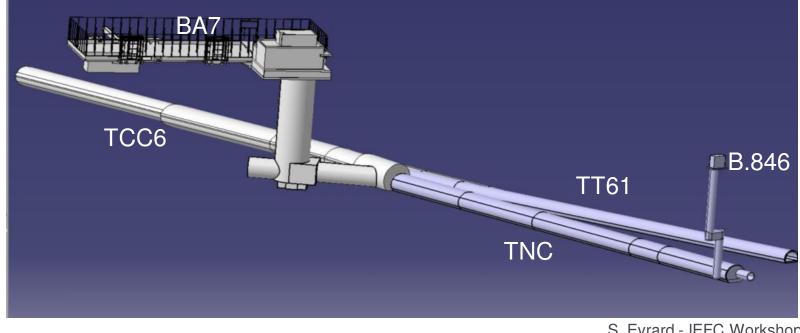

Beam Envelope Calculation

11



- Focal point position: start of large test stand
- **Beam radius at focal point:** $\sigma = 0.5$ mm
- 6σ beam radius and 5 mm max. trajectory deviation for beam envelope calculation assumed

12 Integration issues



- Paper drawing from early 80's
 - Laser scanning of the whole area (TNC + TCC6) achieved just before LHC startup
- Migration to Catia → 3D model now available
- Valuable for future projects
- Weekly integration meetings

13 Preparatory works

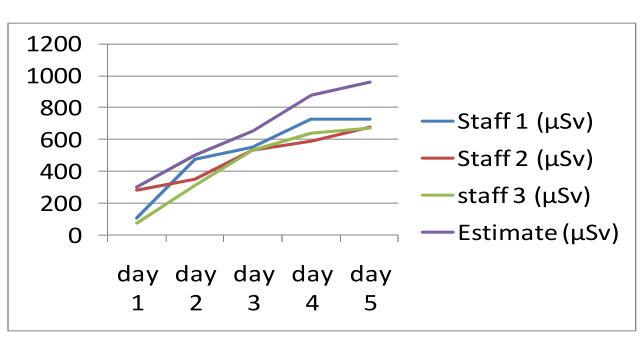
- Radiation survey
 - **Dose rate + contamination** (\rightarrow EDMS 1053964)
- \square Escape path \rightarrow B.846
- □ General safety systems (AUG, red telephones, RIA,...)

14 Dedicated handling means

- Forklift shielded with lead glass and lead sheet (attenuation factor = 5)
- Automatic hook developed by EN-HE (J-L Grenard and C. Bertone)
- Dose rate attenuation due to operator remoteness
- Already tested successfully in TCX blocks removal

15 First activities carried out

- PR 532 refurbishment
- TNC cleaning
- Beam line removal up to T9 target
- TCX blocks dismantling

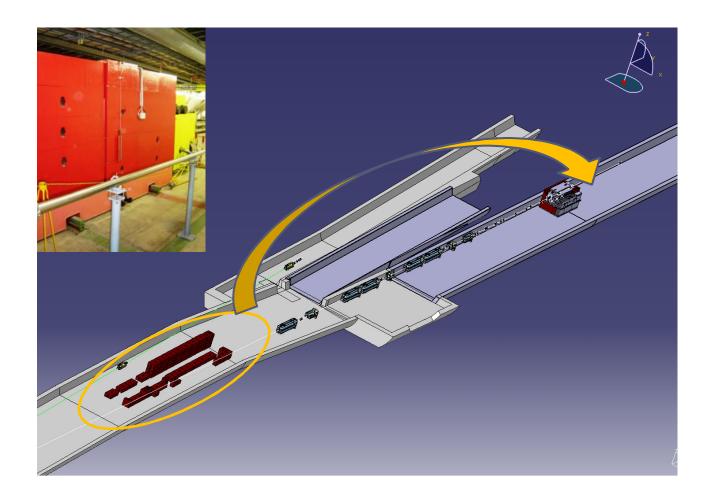

16 Focus on TNC cleaning

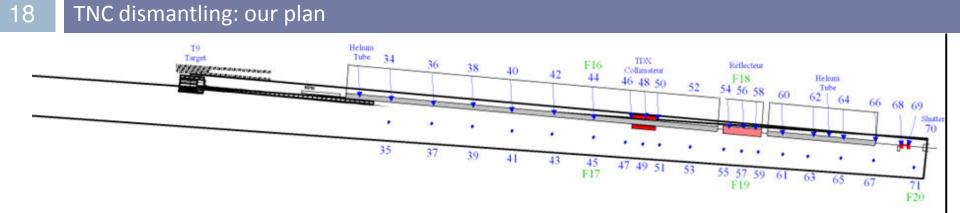
□ Specific price enquiry won by ENDEL Nucleaire (F)

 \Box Smear tests taken where contamination was the highest: reduction by a 10 factor (all smear tests < 1Bq/cm² = contamination level)

Dosimetry below estimates (collective dose 2.2 mSv where 2.8 was estimated in DIMR)

T1 dismantling: our plan


Complete dismantling of T1 target complex


17

Removal step by step during LHC technical shutdown

MTR magnet removal requires TI2 vacuum dismantling

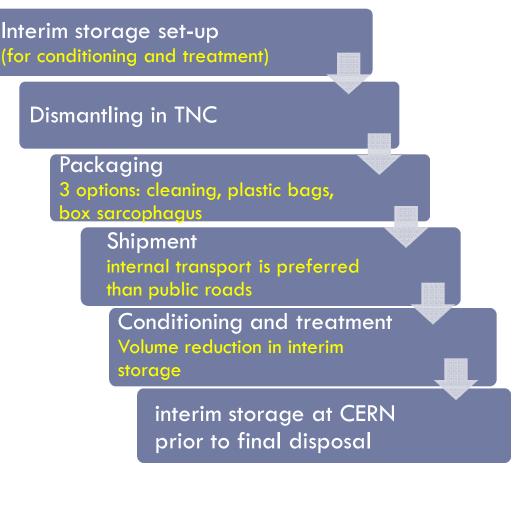
Shielding blocks
 will be re-used for
 HiRadMat dump.

Position	[µSv/h]	Position	[µSv/h]					
34	180	53	75					
35	85	54	600					
36	220							
37	90							
38	300							
39	130							
40	180	59	100					
41	90	60	100					
42	180	61	75					
43	100	62	95					
44	300	63	45					
45	165	64	80					
46	800	65	45					
47	200	66	180					
48	270	67	55					
49	170	68	200					
50	230	69	150					
51	120	70 65						
52	165	71	55					

Cartographie débit d'équivalent de dose réalisée le 17/11/09

Cartogra	phie con	tamination	labile re	éalisée l	e 17/11/09	9
----------	----------	------------	-----------	-----------	------------	---

Position	[Bq/cm2]
44 ⇒F16	5.28
45 =>F17	2.46
56 =>F18	1.23
57 =>F19	0.87
71 =>F20	0.55


EDMS 1053964

19 TNC dismantling: our plan

Consultancy study with TUEV Nord (D) in progress regarding the planning of the dismantling

 Optimization of interventions w.r.t. dose, waste conditioning, measurement procedures, storage & disposal possibilities

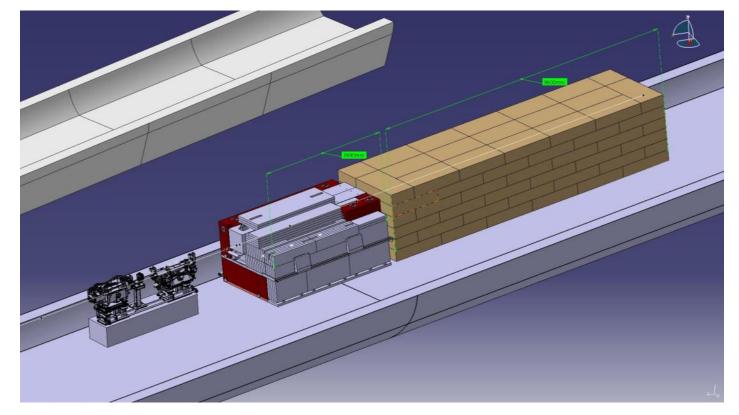
Risk management and documentation (DIMR and ALARA committee)

20

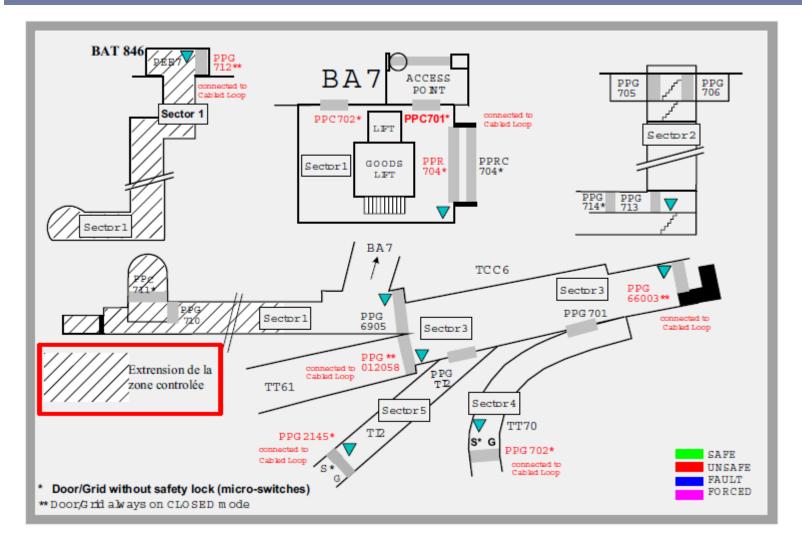
Design parameters for the experimental area

Specification document

Parameter	Value	Parameter
Experiments per year	10	Installed experiment
Maximum intensity per experiment	1×10 ¹⁵ protons <30 full intensity pulses	Material exposed to
Waiting time after experiment for de- installation	≥ 2 weeks	Volume of exposed Equipment size
Access during experiment (except urgent interventions)	no	Length (flange-toWidth
Control of experiment and data taking	remote	 Height below be Height above be
Maximum intensity per year	1×10 ¹⁶ protons	Weight
· · · ·	<u> </u>	Handling zone (L X

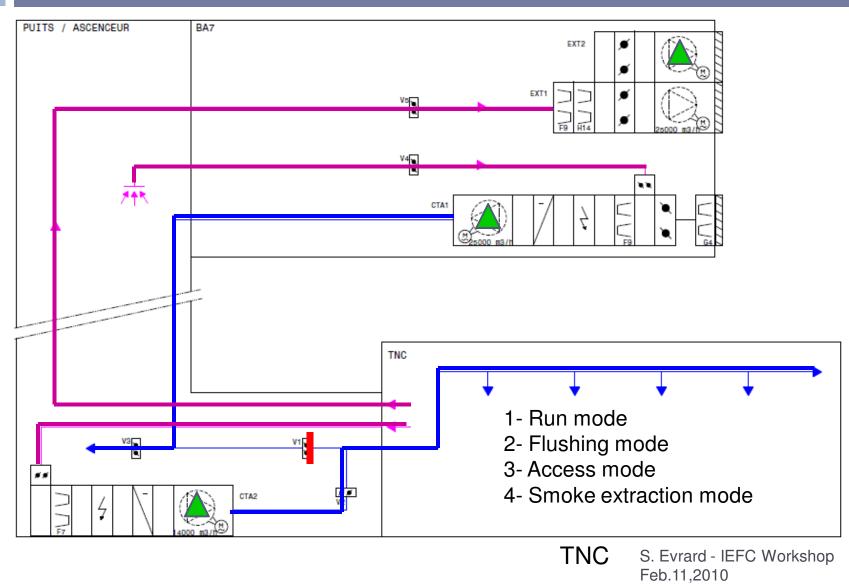

- Additional requirements for the exp. area will depend on the type of equipment and test planned
- Safety and RP constraints should come in addition

Parameter	Value
Installed experiments	1
Material exposed to beam	C, CFC, Cu, W, hBN, Al, Be,
	, advanced composite materials
Volume of exposed material	$\leq 16,800 \text{ cm}^3$
Equipment size	
Length (flange-to-flange)	■ ≤ 7.0 m
■ Width	■ ≤ 1.0 m
Height below beam line	■ 1.1 m
Height above beam line	■ ≤ 0.8 m
Weight	≤ 4,000 kg
Handling zone ($L \times W \times H$)	$15 \times 2.0 \times 2.2 \text{ m}^3$
Equipment support	comes with experiment –
	quick installation interface
	required
Cool-down space	see equipment size
Crane support	mobile cranes sufficient
Handling	prepare fast handling and
	remote installation with crane


Test stands and beam dump

21

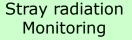
Water-cooled core dump based on TED technology (core graphite bloc)Secondary dump made of cast iron blocks2 stands for collimator (or other equipment) to be tested



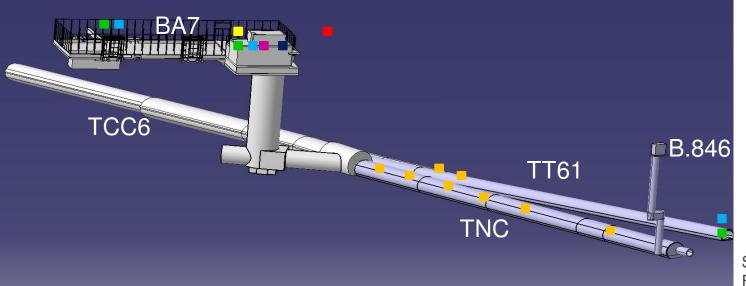
22 Access

23

Cooling & Ventilation



24 Radiation monitoring


- 1 x stray rad. Station (includes cabin + infrastructure)
- Ventilation station
- 8 x PMI monitors (for the HIRADMAT area and the neighbouring tunnel, accurate position to be defined)
- 2 x IG5 monitors (hydrogen type), 1 x IG5 monitors (argon type)
- 3 Alarm Units (UA)
- 1 x hand foot monitor
- 1 x material control monitor П

GM VGM - VAS

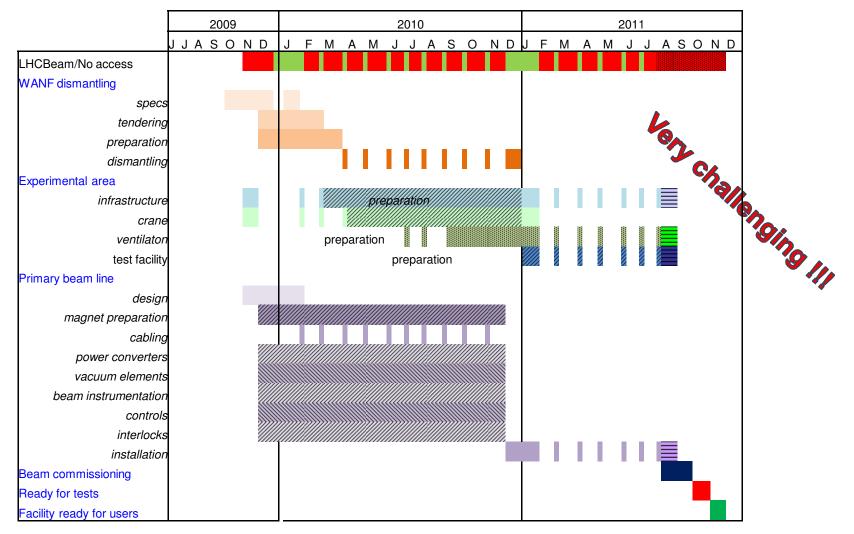
EPIC ERC

S. Evrard - IEFC Workshop Feb.11,2010

Schedule: first version

Major deadlines

25


LHC extended run \rightarrow even more challenging to meet final deadline

	_																													
		2009							2009 2010 A S O N D J F M A M J J A S O A D J															2011						
	J	J	Α	S	0	Ν	D	J	F	Μ	Α	M	J	J	Α	S	0	N	D	J	FI	M	4 I	M	J	A	S	0	Ν	D
LHCBeam/No access																														
WANF dismantling			ļ						ļ					ļ	ļ			N.	ļ											
specs										<u> </u>	ļ	ļļ	ļļ	ļ		ļ	ļ													
tendering											ļ	ļļ	ļ	ļļ		ļ	ļ	ļ				ļ								
preparation	.		ļ											<u> </u>																
dismantling																														
Experimental area			ļ]]],,,,,,															
infrastructure												pr	epe	ira	tion															
crane																								ļ						
ventilaton									ļ						ara															
test facility													pr	rep	ara	tior	۱													
Proton beam line											ļ.	ļļ	ļ	ļ.			ļ													
design			ļ																											
magnet preparation			ļ																											
cabling																														
power converters																														
vacuum elements			l																											
beam instrumentation																														
controls																										l				
interlocks																														
installation																														
Beam commissioning																														
Ready for tests																														
Facility ready for users																														
																			l											
	ļ											ļ	ļ			Ilia	s Ei	fthy	mio	рои	los	ΕŅ	-M	EF,	Oci	t 20	009			

Schedule: revised version

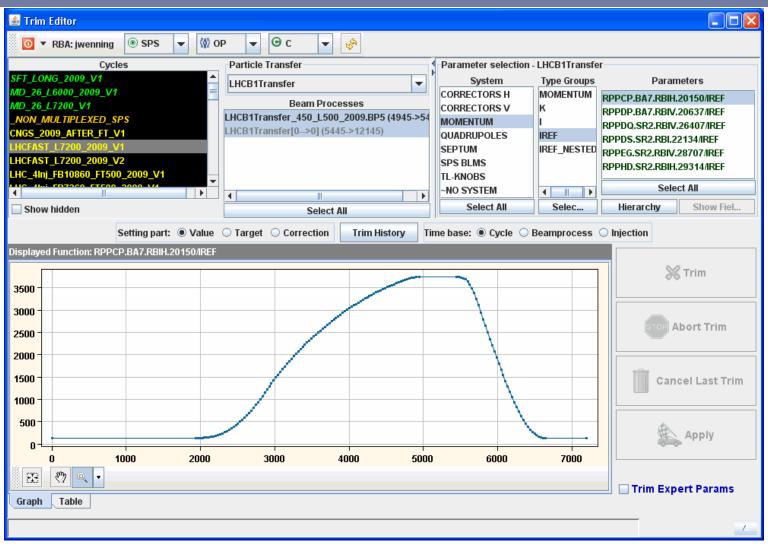
Major deadlines

26

Schedule

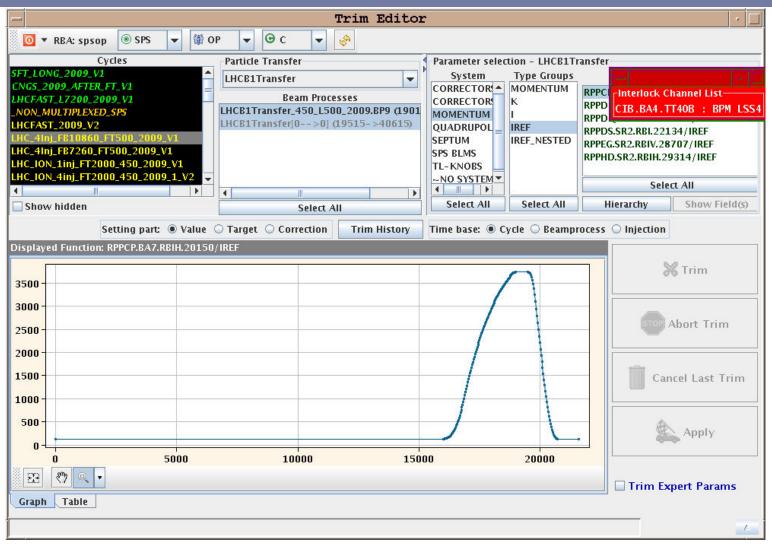
Crit.	Item	Comments
	Water-cooled cables	Could become critical \rightarrow Inspection planned W12
	DC cables	New cables to be pulled $ ightarrow$ limit co-activities
	Signal cables	Needs are being collected $ ightarrow$ cabling campaigns
	Power converters	Long delivery time
	Ventilation units	Procurement procedure (FC,)
	Core dump	Re-use of existing one.
	Vacuum equipments	No major concern
	TBSE	Installation time slot to be carefully defined (TI2 line)
	Radiation monitors	Available on the shelf
	Beam instrumentation and control	Monitors of the TI beam line standards
	Magnets	No new magnet to be built, 2 being refurbished
	Survey equipment	Reference points already set-up and surveyed
	Machine Interlocks	Beam Interlock and Magnet Interlock (no major concern on both systems)

Operation


General lines

Guidelines

- 10 users/year
- (up to) 10^15 protons/user
- (up to) 100 high intensity pulses: 100x3.0E11 p/pulse
- Several pilot pulses/user during setup
- Pilot pulses (setup) can be done in an almost transparent way to present operations
- High-intensity pulses will be done in dedicated HiRadMat cycles – no other physics for SPS
- HiRadMat cycle parameters under study
 - Impact on magnets/power supplies
 - Impact on physics schedule for SPS users


Operation

Power Converter Cycle for Beam Setup

Operation

Power Converter Cycle for HiRadMat Operation

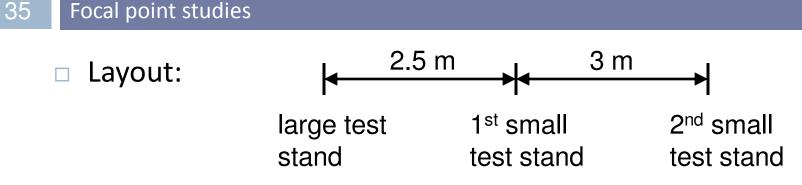
User's support

- Future users already interested in using HiRadMat
 - Collimator phase 2 (prototyping work)
 - LHC beam dump entrance window robustness
 - Studies of protection devices and windows (TE-ABT)
 - Vacuum chamber coatings for electron cloud mitigation
 - R2E teams irradiation facility radiation damage
 - BLM developments
 - LARP Rotatable Collimator Robustness Test (SLAC)
 - Radiation tolerance tests (EN-STI)
 - ISOLDE Target and Ion Source Development
- Infrastructure needed for users
 - Racks/space for electronics and readout in BA7
 - Lab space nearby
 - Office space
 - Training and access procedure

Summary

Project well on tracks

- Organization, work packages, budget defined
- Safety file in progress
- Design stage almost completed
- First activities on site achieved
- Schedule very tight
 - LHC driven planning
 - Make full use of monthly technical stops and 2010 Xmas shutdown
- Radiation risk mitigation strategy
- □ The whole TT60/TCC6/BA6,BA7 areas will be largely renovated.
- Operation issues under study
- Wide range of future users
- Further info at : <u>http://cern.ch/hiradmat</u>


Thanks for your attention

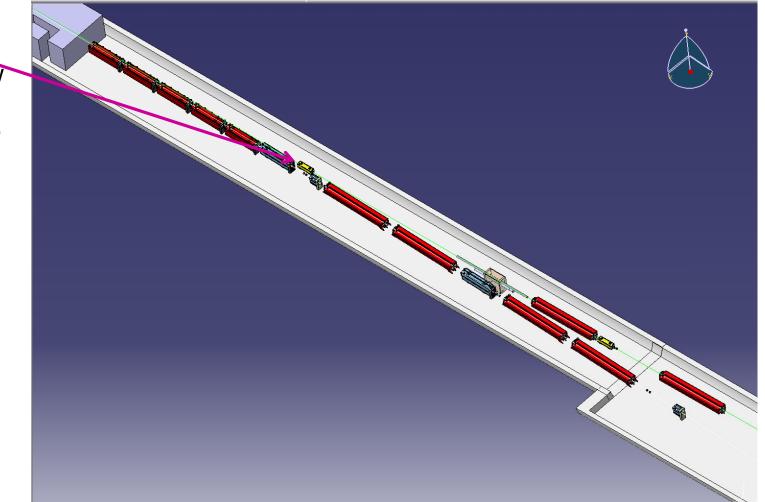
Acknowledgments :

Nadine Conan, Helmut Vincke, Chris Theis, Luisa Ulrici, Yvon Algoet, Daniel Perrin, Malika Meddahi, Christoph Hessler, Brennan Goddard, B. Puccio, Ilias Efthymiopoulos, Catherine Magnier, Serge Pelletier, Caterina Bertone, Dino de Paoli, Hubert Gaillard, Michael Lazzaroni, Thijs Wijnands.

Spares

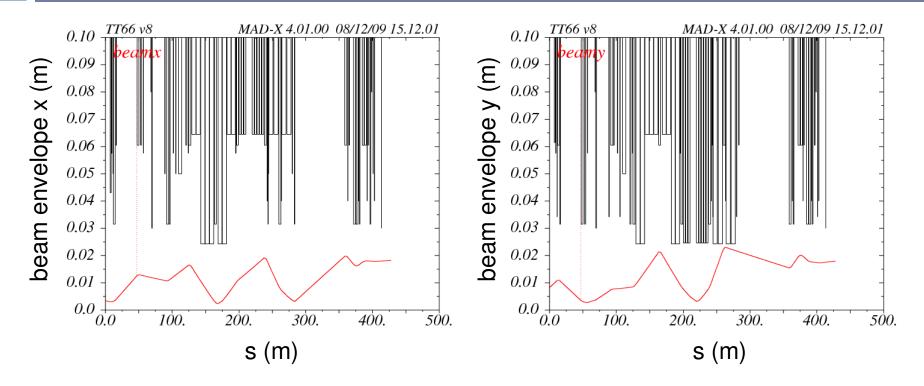
34

Focal point achievable at all 3 positions for $\sigma = 0.1$ to 2.0 mm


□ Focal point @ 1st small test stand:

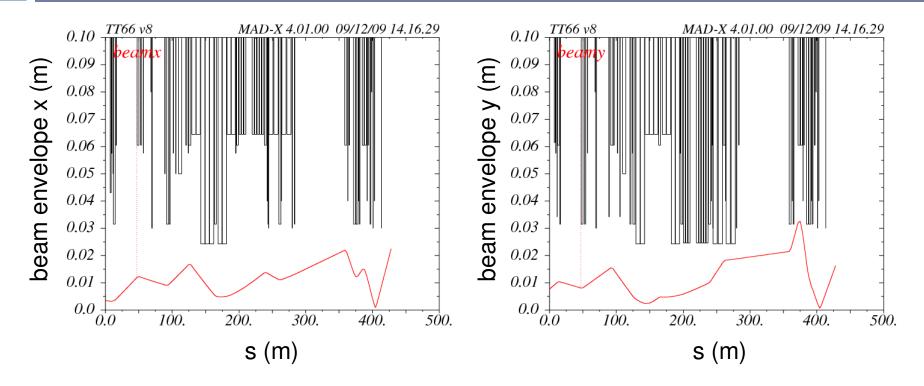
Beam radius (1 σ) at												
large test stand	1 st small test stand	2 nd small test stand										
~2.00 mm	2.00 mm	~2.00 mm										
~0.52 mm	0.50 mm	~0.53 mm										
~0.40 mm	0.10 mm	~0.47 mm										

TBSE location


This new TBSE will allow HiRadMat operation while accessing the LHC tunnel

36

Beam Envelope Calculation


37

- Focal point position: start of large test stand
- **Beam radius at focal point:** $\sigma = 2 \text{ mm}$
- 6σ beam radius and 5 mm max. trajectory deviation for beam envelope calculation assumed

Beam Envelope Calculation

38

- Focal point position: start of large test stand
- **Beam radius at focal point:** $\sigma = 0.1 \text{ mm}$
- 6σ beam radius and 5 mm max. trajectory deviation for beam envelope calculation assumed